Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема регулировки скорости вращения вентилятора. Простые терморегуляторы в блоках питания — Все для кулера (Вентилятора) — Компьютер и электроника к нему! Функции и основные характеристики

Схема регулировки скорости вращения вентилятора. Простые терморегуляторы в блоках питания — Все для «кулера» (Вентилятора) — Компьютер и электроника к нему. Функции и основные характеристики

Сначала — терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.

По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова . Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1- VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.

Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Рис.1

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру на ощупь можно, только выключив компьютер.

Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).


Рис.3

Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.

Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.


Рис.4

Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.

Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в . Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник . Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6

Простая и надёжная конструкция автоматического регулятора оборотов вращения компьютерного вентилятора (кулера).

Данная конструкция является вариантом предыдущей. Несущественно изменена схема и плата переработана для того, чтобы устройство можно было просто втыкать в разъём «FAN» материнской платы компьютера.

В качестве датчика используется терморезистор 10K. Такие ставят, к примеру, на электронные автомобильные термометры. Характеристика должна быть такова, чтобы сопротивление его уменьшалось с увеличением температуры.

При низкой температуре вентилятор запитан через резистор R8. Если обороты вашего вентилятора слишком малы при использовании номинала 180 ом, его можно уменьшить до 100.

Резистором R3 (470 ом) выставляется порог (уровень температуры) при котором регулятор начинает добавлять обороты вентилятора. Регулировку лучше производить так — нагреть датчик до температуры, при которой начинает требоваться увеличение оборотов, и потенциометром найти точку, при которой светодиод начинает едва светить. Это и будет порогом регулировки.

При помощи потенциометра R4 выставляется «крутизна регулировки». То есть определяется, к какой температуре обороты вентилятора достигнут максимальной величины.

Печатная плата устройства такова:

А вот и устройство в сборе. Разводка платы позволяет контролировать обороты вентилятора средствами материнской платы (для 3-х проводных вентиляторов).

Читать еще:  Программа для регулировки видеокарты ati

Основной проблемой вентиляторов, которые охлаждают ту или иную часть компьютера, является повышенный уровень шума . Основы электроники и имеющиеся материалы помогут нам решить эту проблему своими силами. В этой статье предоставлена схема подключения для регулировки оборотов вентилятора и фотографии как выглядит самодельный регулятор скорости вращения.

Нужно отметить, что количество оборотов в первую очередь зависит от уровня подаваемого на него напряжения. Уменьшая уровень подаваемого напряжения, уменьшается как шум, так и число оборотов.

Схема подключения:

Вот какие детали нам пригодятся: один транзистор и два резистора.

Что касается транзистора, то берите КТ815 или КТ817, также можно использовать мощнее КТ819.

Выбор транзистора зависит от мощности вентилятора. В основном используются простые вентиляторы постоянного тока с напряжением 12 Вольт.

Резисторы нужно брать с такими параметрами: первый постоянный (1кОм), а второй переменный (от 1кОм до 5кОм) для регулировки скорости оборотов вентилятора.

Имея входное напряжение (12 Вольт), выходное напряжение можно регулировать, вращая движковую часть резистора R2. Как правило, при напряжении 5 Вольт или ниже, вентилятор перестает шуметь.

При использовании регулятора с мощным вентилятором советую установить транзистор на небольшой теплоотвод.

Вот и все, теперь вы можете собрать регулятор скорости вентилятора своими руками, без шумной вам работы.

С уважением, Эдгар.

Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема

Изготовление регулятора

После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.

Настройка

Данный регулятор может применяться везде, где необходима автоматическая регулировка скорости вращения вентилятора, а именно, усилители, компьютеры, блоки питания, и прочие устройства.

Схема устройства

Напряжение создаваемое делителем напряжения R1 и R2 задаёт начальную скорость вращения вентилятора (когда терморезистор холодный). При нагреве резистора его сопротивление падает и напряжение подводимое к базе транзистора Vt1 увеличивается, а в след за ним увеличивается напряжение на эммитере транзистора Vt2, следовательно увеличивается напряжение питающее вентилятора и его скорость вращения.

Налаживание устройства

Некоторые вентиляторы могут нестабильно запускаться, или не запускаться вовсе при пониженном напряжении питания, то нужно подобрать сопротивления резисторов R1 и R2. Обычно новые вентиляторы запускаются без проблем. Для улучшения запуска, можно включить цепочку из последовательно соединённых резистора на 1 кОм и электролитического конденсатора между + питания и базой Vt1, параллельно терморезистору. В таком случае во время заряда конденсатора вентилятор будет работать на максимальных оборотах, а когда конденсатор зарядится обороты вентилятора снизяться до величины установленной делителем R1 и R2. Это особенно пригодится при использовании старых вентиляторов. Ёмкость конденсатора и сопротивление указана примерные, возможно их придётся подобрать при настройке.

Высокоэффективный автоматический контроллер вентиляторов своими руками

Для снижения шума системного блока в режиме простоя или сидения в чате или лазании в инете по ночам предлагаю схему регулятора оборотов вентиляторов, основными преимуществами которой являются: высокая чувствительность, малая инерционность и гибкость настроек. Опробованные мной готовые регуляторы и собранные по предлагаемым в Интернете простым схемкам не устраивали меня в основном из-за их низкой чувствительности и вследствие это — малого диапазона регулировки оборотов вентиляторов. Будем делать свою схему!

Схема собрана на операционном усилителе и составном транзисторе средней мощности, который обеспечивает ток в нагрузке до 1 Ампера — это позволяет подключить к одному регулятору до 5 вентиляторов суммарной нагрузкой до 12 Вт.

Назначение подстроечных резисторов:

R4- регулировка минимальной температуры, при которой стартуют вентиляторы. (смещение регулировочной характеристики по оси « обороты»)

R6- регулировка температуры, при которой вентиляторы выходят на полные обороты. ( наклон регулировочной характеристики, ее крутизну)

Замена элементов: Операционный усилитель- К140УД17, ОР-07С, 544уд2

Транзистор- оптимально применить составной «дарлингтон» из серии кт 972 с любым буквенным индексом. Очень хорошие хорошие результаты показали транзисторы BD 677a. Радиатор для транзистора не нужен, если конечно не будем пропеллер от кукурузника цеплять :).

Терморезистор — желательно применять миниатюрный, номиналом от 10 до 100 КОм, изолировать его лучше всего методом погружения терморезистора в эпоксидную смолу — получается тонкий и прочный изоляционный слой с малой тепловой инерционностью.

Может понадобиться подбор R2 в зависимости от параметров применяемого терморезистора. Сопротивление этого резистора должно составлять примерно 1/3 сопротивления терморезистора при температуре 25°С. Можно поступить иначе: подбираем такой номинал R2, при котором напряжение на вентиляторе составляет около 5 Вольт (при средних положениях подстроечных резисторов R4 и R6) при температуре 36.6 °С (нагреваем терморезистор пальцами). Монтаж можно выполнить на небольшой макетной печатной плате.

Схема контроллера вентиляторов в сборе

Спаяли? Не расслабляемся — начинается самое главное и трудное – настройка! Так как количество и мощность вентиляторов сильно влияют на настройки, рекомендую настраивать регулятор с теми вентиляторами, которые будут использоваться в дальнейшем. Запитывать схему во время настройки категорически рекомендую от отдельного блока питания на 12 Вольт, желательно стабилизированного.

Подобираем резистор R2(см выше), подстроечники в среднем положении.

Подносим датчик к паяльнику на расстояние 1-2 см- вентилятор должен сразу выйти на полные обороты (около 11 Вольт на нем) — перемещаем датчик в поток воздуха — вентилятор должен практически остановиться через 20-30 сек (около 4 Вольт). Работает? Ура! Поехали дальше…

Читать еще:  Можно ли синхронизировать музыку через icloud

Нагреваем датчик до температуры около 47-49 о С — я прижал его к батарее (она не очень горячая у меня, где-то так и есть — под 50 градусов Цельсия). Ставим R6 в макс положение (вентилятор должен на полную крутиться) и постепенно уменьшаем сопротивление до тех пор, пока напряжение на кулере не начнет уменьшаться, после чего чуть-чуть (!) поворачиваем подстроечник назад.

Берем датчик в руку (36,6 о С) — и уже резистором R4 выставляем пороговое напряжение на кулере — он должен только только начинать вращаться.

Повторяем п. 3, затем п.4. Это предварительная настройка.

Окончательная настройка производится после полной сборки системы — для удобства советую подпаять два провода к контактам платы «+ Фан» и «Земля» и аккуратно вывести их из системника — на них мы будем контролировать тестером напряжение питания кулера.

Обильно смазанный термопастой термодатчик располагаем на радиаторе как можно ближе к ядру процессора .

Включаем компьютер и проверяем, крутятся ли вентиляторы. Они крутиться не должны, если конечно температура в помещении не 35 градусов. По мере прогрева в режиме простоя напряжение на кулерах должно подняться примерно до 5 Вольт.

Закрываем крышку, ждем мин 20-быстро открываем крышку и R4 уменьшаем напряжение до 6 Вольт. Дальше можно ничего не трогать — просто проверяем.

Запускаем тестовую программу — можно из Сандры стресс тест мин на 20, при этом контролируем напряжение на кулере- на максимум оборотов он должен выйти минут через 8-10. Если это происходит гораздо быстрее — значит вентиляция корпуса недостаточная, нужно ставить более мощный кулер или еще один, или еще что-то думать.

В итоге правильно настроенная система вентиляции корпуса должна работать по следующему алгоритму: при включении крутятся только процессорный и кулер блока питания. По мере прогрева в режиме малой нагрузки начинают вращаться корпусные вентиляторы на малых оборотах — температура стабилизируется на уровне 36-37 градусов в корпусе и 45-48 градусов на ядре процессора. По мере увеличения нагрузки, нагрев внутрикорпусного воздуха должен компенсироваться увеличением производительности именно корпусных кулеров — регулировка на процессорном кулере гораздо менее эффективна — проверено! Смысл гонять раскаленный воздух — шума много, а толку ноль. И, как правило, корпусные вентиляторы более мощные и шумные чем процессорные. Поэтому процессорный запитан у меня от 7 Вольт постоянно, корпусные регулируются, а не наоборот как в большинстве случаев.

Получилась очень тихая система в режиме покоя и просто тихая в режиме макс. нагрузки. Не Zalman Reserator, конечно, но тише чем большинство водянок, виденных мной.

Впоследствии этого мне показалось мало, и я поставил регулировку и на процессорные вентиляторы. Итого сейчас в системнике у меня крутятся два корпусных 80мм Glacial Tech на выдув, два процессорных 80мм Aerocool и один корпусный 80мм Glacial Tech на вдув.
Вот так ЭТО выглядит:

Вентиляторы в корпусе

Вот график скорости вращения в зависимости от режимов компьютера (fan 01- корпусные на выдув, fan 02- процессорные, fan 03- корпусный на вдув, не регулируется):

  • 1- 3D MARK 03
  • 2-Burn к7
  • 3- Oпера и закачка файлов по DC++
  • 4- Idle

Субьективно в режимах 3 и 4 днем машины вобще не слышно, ночью еле-еле слышен шелест воздуха и грохот винта. Все вопросы по предлагаемому устройству присылайте на E-mail или по аське 324765896. Успехов!

Самодельный регулятор оборотов вентиляторов компа — реобас для кулеров ПК схема.

Самодельный реобас избавит от шума домашнего компьютера, оставленного на ночь для закачки файлов. Днем компьютер вроде бы работает тихо, а вот ночью, гудит как самолет. Просто днем шум компьютера перекрывается фоновыми звуками. Ночью же фон исчезает и шум компьютера превращается в назойливый гул, мешающий спать. И дело здесь не в том что нужно почистить или заменить старые кулеры на новые фирменные брендовые и так далее. Нет, дело здесь в том, что любые чистые даже самые крутые кулеры при полном питании будут давать значительный шум в ночной тишине.

Можно ли замедлить кулер компьютера?

Я решил сделать реобас чтобы замедлить вращение шумящих кулеров . В режиме закачки файлов ничего страшного с компьютером не произойдет. Он не перегреется, если например происходит только лишь закачка файлов и никаких других операций процессор не выполняет. Протестировал температуру процессора некоторое время программой Everest – температура 43 градуса при питании всех кулеров от 5 вольт. Вполне приемлемо.

Как замедлить вращение кулера.

Вообще же есть несколько способов замедлить работу кулеров:

-Уменьшить скорость кулеров в БИОСе. Недостаток – придется при увеличении нагрузки процессора заходить в БИОС и повышать обороты. А это связано с перезагрузкой компа.

-Использовать программу SpeedFan. Недостаток – программу нужно ставить в автозагрузку. Не забывать переустанавливать ёе при переустановке операционной системы. Программа потребляет ресурс процессора. Поддерживается работа не всех материнских плат.

-Переключить кулеры на питание 5 вольт. Недостаток – нет возможности отрегулировать желаемые обороты. При 5-ти вольт кулеры крутятся слабовато. При запылении могут остановится.

Использовать реобас – устроуство ручного регулирования скорости кулеров с выведенными ручками регуляторов на переднюю панель компа. На этом способе собственно и хочу остановится.

Самодельный реобас.

Китайская народная промышленность в числе прочих мыслемых и не мыслемых гаджетов, выпускает так же и простенькие реобасы для трудящихся – контроллеры кулера, которые у нас можно приобрести по приемлемой цене. Можно просто купить регулятор кулеров и не парится. Но мы не ищем легких путей. К тому же порой ждать посылку из интернет магазина неохота, когда этот реобас нужен сегодня и в наличии есть паяльник и несколько деталюшек от дедушкиного телевизора. В общем, я решил спаять реобас для компа.

В действительности же, чаще всего простой реобас представляет из себя обыкновенный регулируемый стабилизатор напряжения, на вход которого подается 12 вольт от компьютерного блока питания. К выходу же подключаются все или некоторые кулеры компа. Такой стабилизатор можно собрать, например на одном советском транзисторе и паре резисторах найденных на помойке. Но лучше все таки собрать реобас на микросхеместабилизаторе LM317, повсеместно распространенной по всему земному шару.

Читать еще:  Samsung kies как синхронизировать контакты

Схема реобаса, конструкция.

Как сделать реобас — да очень просто. Для начала, саму микросхему LM317 нужно установить на небольшой радиатор и расположить ее недалеко от корпусного кулера (см фото). Остальная схема реобаса смонтирована на печатной плате навесным монтажом со стороны дорожек (монтаж без сверления отверстий под выводы радиодеталей). Однако это не существенно. В моей конструкции реобаса резистор- регулятор оборотов кулеров расположен внутри компьютера (на плате реобаса), а не выведен на панель компьютера для оперативной регулировки. Экспериментальным путем было установлено, что напряжение 6.5 вольта является самым оптимальным для отношения шум/охлаждение компьютера. То есть регулятором выставлено именно это напряжение на вентиляторах ПК. Возможность оперативной регулировки отсутствует, так как регулятор расположен внутри компьютера. Это сделано для того, чтобы исключить работу компьютера с низкими оборотами кулеров, случайно выставленным регулятором и забытыми в таком положении на длительное время.

Так же схема регулятора оборотов кулеров компьютера имеет тумблер, шунтирующий устройство по питанию и подающий полное напряжение 12 вольт на кулеры ПК. Такой режим может использоваться при необходимости и нтенсивного охлаждения компьютера например при обработке графики. Тумблер выведен на заднюю панель компьютера. То есть, днем при интенсивной работе компьютера можно включать тумблер, тем самым обеспечивая хорошее охлаждение ПК. Если же например нужно оставить компьютер на ночь для выполнения несложных задач — тумблер можно отключить тем самым снизив шум кулеров компа (закачка файлов, файлсервер со слабой нагрузкой, видеонаблюдение — нужно определить нагрев индивидуально для Вашего компа ). Лично я, например не играю в компьютерные игры в принципе, не занимаюсь профессиональной обработкой видео на домашнем компьютере а использую домашний компьютер в основном для интернета. По этому, тумблер у меня постоянно отключен и все кулеры, в том числе и процессорный работают от реобаса на 6.5 вольтах вот уже 7 лет. Полет нормальный.

Регулятор скорости вращения вентилятора

При работе на персональном компьютере оператор находится под воздействием различных утомляющих факторов, одним из которых является шум вентиляторов системного блока. Если ПК эксплуатируется более двух лет, шум становится больше, особенно от вентилятора источника питания. Регулятор вращения вентилятора позволяет уменьшить шум особенно в холодное время года, увеличить срок службы вентиляторов и уменьшить потребление электроэнергии. Простое схемное решение не потребует много времени на изготовление, не нуждается в печатной плате, не включает полупроводниковых элементов, не требует настройки и под силу начинающему электротехнику. Простая схема регулятора упрощает оснащение каждого вентилятора своим регулятором.

Вентилятор, соединённый с терморегулятором становится термостабилизирующим устройством. При комнатной температуре объекта охлаждения ток через вентилятор минимальный, он находится в режиме самых малых оборотов. При возрастании температуры датчик нагревается, ток через вентилятор возрастает, увеличивается скорость оборотов, происходит охлаждение, температура снижается, ток через цепь датчик-вентилятор уменьшается и вентилятор возвращается к режиму самых малых оборотов. Если температура воздуха в помещении высока вентилятор будет удерживать температуру охлаждаемого объекта на наименее возможном уровне.

Датчиком температуры является терморезистор с отрицательным коэффициентом изменения сопротивления, т. е. при нагреве сопротивление терморезистора уменьшается. Температура эксплуатации терморезистора достигает 150 градусов, поэтому такая схема не нуждается в мощных элементах управления нагрузкой, что позволило отказаться от транзисторов, микросхем, реле и т. п. Терморезистор приклеивается к радиатору эпоксидной смолой и располагается в точке наибольшего нагрева. Эпоксидная смола обеспечивает хорошую передачу тепла терморезистору, что увеличивает быстродействие регулятора.

Схема подключения вентилятора

При включении компьютера терморезистор холодный, его сопротивление высоко, вследствие этого через вентилятор течёт малый ток недостаточный для первоначальной «раскрутки». У вентиляторов, прослуживших год, два ток необходимый для начала движения больше чем у новых. Для уверенного старта вентилятора необходимо подать максимально возможный ток на короткое время. Для выполнения этой задачи параллельно с терморезистором соединяется электролитический конденсатор. При включении питания ПК конденсатор начинает заряжаться и в первый момент времени через цепь конденсатор, вентилятор течёт большой ток, равный короткому замыканию терморезистора как до введения регулятора вращения. По мере заряда конденсатора ток постепенно уменьшается до величины определяемой значением сопротивления холодного терморезистора. Так формируется импульс тока, необходимый для старта вентилятора. Ёмкость конденсатора 2200…6800 мкФ– достаточна для формирования импульса достаточной длительности. Ёмкость конденсатора ограничена габаритами, его стоимостью.
Конденсатор закрепляется с помощью хомута на радиатор в наиболее холодной части или к другому элементу конструкции. Схема соединяется проводами, при этом соблюдается полярность питания вентилятора и выводов конденсатора, иначе внутри системного блока спустя час работы произойдёт небольшой взрыв.
Чем больше номинальный ток вентилятора, тем больше ёмкость следует применить. При сборке регулятора вращения вентилятора процессора емкость следует выбрать не менее 2200 мкФ, а при регулировке охлаждения блока питания – не менее 4700 мкФ. При управлении вентилятором блока питания использовать терморезистор номинальным значением 75 Ом, вентилятором процессора – 150 Ом.

Для вентилятора процессора

Для вентилятора блока питания

comp110-2.png

comp110-3.jpg

comp110-4.jpg

comp110-5.jpg

В схеме можно применить терморезисторы других типов, например: КМТ-12, СТ3-17, СТ9-1А или зарубежного производства. Основное требование, предъявляемое к терморезистору – отрицательная температурная характеристика. При наличии терморезисторов с большим сопротивлением, чем требуется можно использовать два или три соединённые параллельно терморезистора. При такой схеме можно контролировать температуру в двух-трёх точках охлаждаемого объекта одновременно. Терморезисторы выполненные в виде диска или тора предпочтительнее, но подойдут и другие. Конденсаторы должны иметь рабочее напряжение выше напряжения питания вентилятора. Монтаж выполняется проводом любой марки.

Итоговая стоимость регулятора составляет около трёх долларов.

Денисов Платон Константинович, г. Симферополь, simferopol1970@gmail.com

    (23 Кб)
  • Altium Designer

Денисов П.К. Опубликована: 2012 г. 0
Вознаградить Я собрал 0 0

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector