Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование скорости работы пневмоцилиндров

Регулирование скорости работы пневмоцилиндров

В условиях современного производства часто возникают задачи, требующие перемещения и фиксации объектов. Например, на линиях упаковки пищевых продуктов (сыр, творог) и розлива напитков (молоко, соки, газированные напитки), на термопластавтоматах, при производстве резинотехнических изделий и т. д. Одним из наиболее простых и экономически выгодных устройств для линейного перемещения объектов является пневмоцилиндр.

На рисунке 1 несколько упрощённо показана конструкция пневмоцилиндра. Если порт P2 подключить к линии сжатого воздуха, а из порта P1 сбросить воздух в атмосферу, поршень цилиндра начнёт двигаться влево, приводя к выдвижению штока (прямой ход штока). Подача давления в порт P1 и сброс воздуха из порта P2 приводят к движению в противоположном направлении (обратный ход штока).

схема пневмоцилиндраРисунок 1 – Конструкция пневмоцилиндра

2. Фитинги с регулировкой расхода воздуха

Изменяя расход воздуха, поступающего в пневмоцилиндр, или расход воздуха, выходящего из него, мы можем регулировать скорость работы цилиндра. Для этого используются специальные фитинги с регулировкой расхода, также называемые дросселями. Рассмотрим конструкцию дросселя на примере фитинга MV 34 .. .. /B (рисунок 2). Фитинг-регулятор расхода имеет сужение 3, к которому с помощью микрометрического винта 1 подводится регулирующий элемент 2. Таким образом, вращением винта изменяется размер проходного сечения фитинга и, следовательно, расход через него. На рисунке 2 также показано обозначение данного фитинга на пневмосхемах.

Очевидно, что установка таких фитингов на обоих портах пневмоцилиндра (P1 и P2) не позволит независимо управлять скоростью прямого и обратного хода штока цилиндра, поскольку дросселирование потока воздуха при прохождении через фитинг происходит в обоих направлениях. В итоге скорость движения штока будет ограничена наименьшим расходом воздуха.

конструкция фитинга с регулировкой расходаРисунок 2 – Фитинг с регулировкой расхода серии MV 34 .. .. /B

Для независимого управления скоростью прямого и обратного хода штока пневмоцилиндров применяют фитинги-регуляторы расхода с обратным клапаном. Их обозначение на пневмосхемах приведено на рисунке 3а. При направлении движения воздуха слева направо обратный клапан закрыт, и воздух через него не проходит (красная стрелка на рисунке 3б). Воздух проходит через дросселирующее устройство, с помощью которого осуществляется регулировка расхода (синяя стрелка на рисунке 3б). При направлении движения воздуха справа налево обратный клапан открывается, и основная часть потока воздуха проходит через него (красная стрелка на рисунке 3в). Некоторая часть воздуха продолжает проходить через дросселирующее устройство (синяя стрелка), однако, это практически не влияет на расход воздуха в целом.

Принцип работы дросселя с обратным клапаномРисунок 3 – Принцип работы дросселя с обратным клапаном

Таким образом, использование дросселей с обратным клапаном обеспечивает регулирование расхода при движении воздуха в одном направлении и максимальный расход при движении воздуха в противоположном направлении. Поэтому при монтаже фитингов-регуляторов расхода с обратным клапаном следует соблюдать направление включения, указанное на пневмосхеме. Как правило, на самом фитинге нанесено его условное графическое обозначение, по которому становится понятно, в каком направлении осуществляется регулирование расхода воздуха, а в каком — обеспечивается полный расход. Например, на рисунке 4 показано расположение такого обозначения для фитингов с регулировкой расхода MV 21 и MV 34.

Фитинги-регуляторы расхода с обратным клапаномРисунок 4 – Фитинги-регуляторы расхода с обратным клапаном

3. Регулирование скорости работы пневмоцилиндров

Регуляторы расхода (дроссели) с обратным клапаном позволяют осуществлять изменение расхода воздуха при его движении в одном направлении и не ограничивают расход в противоположном направлении. Эту особенность можно использовать для задания разной скорости движения поршня пневмоцилиндра в прямом и обратном направлении.

Возможны две разные схемы расположения дросселей с обратным клапаном при регулировании скорости хода штока пневмоцилиндра:

  • регулирование расхода при подаче воздуха в цилиндр (при этом расход воздуха на сброс не ограничивается);
  • регулирование расхода при сбросе воздуха из цилиндра (при этом расход воздуха на подачу не ограничивается).

Рассмотрим эти варианты последовательно.

Регулирование расхода при подаче воздуха в цилиндр

При использовании данного способа регулирования сбрасываемый воздух будет выходить из пневмоцилиндра быстрее подаваемого, поскольку использование дросселей позволяет только уменьшить расход воздуха, но не увеличить его. Это приводит к тому, что в одной из камер цилиндра давление оказывается близким к атмосферному. Данная ситуация показана на рисунке 5: порт P1 соединён с атмосферой, в порт P2 осуществляется подача сжатого воздуха, шток цилиндра движется влево.

Регулирование расхода при подаче воздуха в цилиндрРисунок 5 – Регулирование расхода при подаче воздуха в цилиндр

Такое распределение давлений внутри цилиндра имеет следующие последствия:

1. Ухудшается восприятие цилиндром нагрузки в направлении движения штока. Это происходит потому, что давление в камере цилиндра, в сторону которой осуществляется движение, близко к атмосферному, и оно не оказывает сопротивления движению в данном направлении.

2. При небольших скоростях шток начинает двигаться рывками. Дело в том, что расход поступающего в цилиндр воздуха ограничен, а объём камеры увеличивается по мере движения штока. Совместно с различными значениями силы трения покоя и силы трения скольжения это приводит к колебаниям давления внутри цилиндра и неравномерному движению штока.

3. Становится невозможной остановка штока цилиндра в промежуточных положениях с помощью клапанов 5/3 центр закрыт. Как видно на рисунке 5, одна из камер цилиндра находится под давлением, а вторая — нет. Поэтому при переводе распределительного клапана 5/3 центр закрыт в среднее положение неизбежно продолжение движения цилиндра до тех пор, пока давление в обеих камерах не уравновесится.

Регулирование расхода при сбросе воздуха из цилиндра

При использовании данного способа регулирования подача воздуха в цилиндр осуществляется с максимальным расходом, а расход воздуха при сбросе в атмосферу ограничен, т. е. воздух может поступать в цилиндр быстрее, чем выходить из него. При данной схеме регулирования давление в сбросной камере пневмоцилиндра сохраняется во время движения штока (рисунок 6, камера порта P1).

Регулирование расхода при сбросе воздуха из цилиндраРисунок 6 – Регулирование расхода при сбросе воздуха из цилиндра

Такой способ регулирования имеет следующие особенности:

1. Пневмоцилиндр хорошо воспринимает нагрузку как сонаправленную с движением штока, так и имеющую противоположное направление, поскольку обе камеры цилиндра находятся под давлением.

2. По сравнению с предыдущей схемой регулирования становится возможным достижение более медленных скоростей движения при сохранении плавности хода штока.

3. Упрощается остановка штока в заданном положении. Так как обе камеры цилиндра находятся под давлением, при их перекрытии цилиндр быстро достигает равновесного состояния. Это существенно уменьшает расстояние, пройденное штоком от момента перекрытия портов цилиндра до полной остановки штока.

Читать еще:  Устройство механизма регулировки спинки сиденья

Из этого следует, что регулирование расхода при сбросе воздуха из цилиндра является предпочтительным по сравнению с регулированием расхода при подаче воздуха в цилиндр.

4. Фитинги с регулировкой расхода для разных способов монтажа

При рассмотрении конструкции и принципа работы фитингов с регулировкой расхода были упомянуты две модели таких фитингов: MV 21 и MV 34 (см. рисунок 4). Конструкция фитингов-регуляторов позволяет легко смонтировать их на панели. Поэтому данные модели удобно использовать в случаях, требующих оперативной подстройки скорости работы пневмоцилиндров.

Однако, в некоторых случаях, регулирование оператором скорости работы пневмоцилиндров не только не требуется, но и может иметь негативные последствия. Например, неправильная настройка взаимодействующих между собой механизмов может привести к некорректной работе всей установки. Для ограничения доступа оперативного персонала к устройствам регулирования скорости пневмоцилиндров существуют модификации фитингов с регулировкой расхода, монтируемые непосредственно на пневмоцилиндры или на распределительные клапаны. На рисунке 7 приведён внешний вид и пневмосхемы таких фитингов.

Фитинги с регулировкой расхода с обратным клапаномРисунок 7 – Фитинги с регулировкой расхода с обратным клапаном

Фитинги серии MV 41 с литерами /C и /V отличаются друг от друга направлением установки обратного клапана. Фитинги модификации MV 41.. ../C предназначены для установки на пневмоцилиндры (C – cylinder), модификации MV 41.. ../V – для установки на клапаны (V – valve). Направление установки обратного клапана в фитингах этой серии подобрано таким образом, чтобы обеспечить регулирование расхода при сбросе воздуха из цилиндра.

На рисунке 8 приведены пневмосхемы для подстройки скорости прямого и обратного хода штока пневмоцилиндра Vesta NWT 050.0100, управляемого клапаном VALMA PIV-S-A-14.

устройство регулировки расхода газа

3.2.1.5 устройство регулировки расхода газа: Устройство, позволяющее устанавливать определенное значение расхода газа через горелку в соответствии с условиями газоснабжения. Рабочая операция, выполняемая этим устройством, называется «регулировка расхода газа».

3.2.1.3 устройство регулировки расхода газа: Устройство, позволяющее устанавливать определенное значение расхода газа через горелку в соответствии с условиями газоснабжения. Рабочая операция, выполняемая этим устройством, называется «регулировка расхода газа».

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

Полезное

Смотреть что такое «устройство регулировки расхода газа» в других словарях:

устройство регулировки расхода газа — устройство, позволяющее устанавливать определенное значение расхода газа через горелку в соответствии с условиями газоснабжения. Рабочая операция, выполняемая этим устройством, называется «регулировкой расхода газа». (Смотри: ГОСТ Р 51733 2001.… … Строительный словарь

регулятор расхода газа — 3.23 регулятор расхода газа: Устройство, поддерживающее постоянный расход газа в пределах установленного диапазона независимо от перепада давлений перед устройством и за ним. Источник: ГОСТ Р 51847 2001: Аппараты водонагревательные проточные… … Словарь-справочник терминов нормативно-технической документации

устройство — 2.5 устройство: Элемент или блок элементов, который выполняет одну или более функцию. Источник: ГОСТ Р 52388 2005: Мототранспортны … Словарь-справочник терминов нормативно-технической документации

давление газа — 3.6 давление газа: Избыточное давление движущегося газа относительно атмосферного давления. Источник: ГОСТ Р 52057 2003: Краны для газовых аппаратов. Общие технические требования и методы испытаний … Словарь-справочник терминов нормативно-технической документации

регулятор расхода — 3.2.3.28 регулятор расхода: Устройство, которое поддерживает расход между фиксированными крайними значениями в пределах диапазона заданных величин независимо от значений давления газа на входе и на выходе из него. Источник … Словарь-справочник терминов нормативно-технической документации

СТП 006-97: Устройство соединений на высокопрочных болтах в стальных конструкциях мостов — Терминология СТП 006 97: Устройство соединений на высокопрочных болтах в стальных конструкциях мостов: 9.3 Огневая очистка. Перед началом работы необходимо осмотреть горелку, убедиться в ее исправности и правильности подсоединения шлангов в… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 53634-2009: Котлы газовые центрального отопления, котлы типа В, номинальной тепловой мощностью свыше 70 кВт, но не более 300 кВт. Общие технические требования и методы испытаний — Терминология ГОСТ Р 53634 2009: Котлы газовые центрального отопления, котлы типа В, номинальной тепловой мощностью свыше 70 кВт, но не более 300 кВт. Общие технические требования и методы испытаний оригинал документа: 3.2.3.15 автоматическая… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54439-2011: Котлы газовые для центрального отопления. Котлы типа В с номинальной тепловой мощностью свыше 300 кВт, но не более 1000 кВт — Терминология ГОСТ Р 54439 2011: Котлы газовые для центрального отопления. Котлы типа В с номинальной тепловой мощностью свыше 300 кВт, но не более 1000 кВт оригинал документа: 3.2.3.3 автоматическая система управления горелкой: Система, которая… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 54788-2011: Кондиционеры абсорбционные и адсорбционные и/или тепловые насосы газовые с номинальной тепловой мощностью до 70 кВт. Часть 1. Безопасность — Терминология ГОСТ Р 54788 2011: Кондиционеры абсорбционные и адсорбционные и/или тепловые насосы газовые с номинальной тепловой мощностью до 70 кВт. Часть 1. Безопасность оригинал документа: 3.1.11 абсорбция (absorption): Процесс, при котором… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 51733-2001: Котлы газовые центрального отопления, оснащенные атмосферными горелками, номинальной тепловой мощностью до 70 кВт. Требования безопасности и методы испытаний — Терминология ГОСТ Р 51733 2001: Котлы газовые центрального отопления, оснащенные атмосферными горелками, номинальной тепловой мощностью до 70 кВт. Требования безопасности и методы испытаний оригинал документа: 1.3.4.11 блокировка подачи газа:… … Словарь-справочник терминов нормативно-технической документации

Регуляторы нулевого давления и соотношения давления газ-воздух DN 50-100, с присоединительными фланцами PN 16

Нуль регулятор давления РС 2 1/2-0,5 Н PN16 (с присоединительными фланцами PN 16). ТЕРМОБРЕСТ

Данные регуляторы могут быть применены как в качестве регуляторов нулевого давления, так и в качестве регуляторов соотношения газ-воздух.

В качестве регулятора нулевого давления предназначен для пропорционального регулирования расхода газа в зависимости от разрежения на выходе либо в контрольной точке трубопровода и поддержания газовоздушной смеси в постоянном соотношении.

В качестве регулятора соотношения газ-воздух предназначен для получения смеси газ-воздух и автоматического поддержания полученной пропорции при изменении давления воздуха. Позволяет получить смесь газ-воздух в соотношении 1:1, а в случае установки в газовый тракт после регулятора соотношения газ-воздух дополнительного устройства регулировки расхода, например регулирующей заслонки, возможно получение смеси газ-воздух в пропорции 1:10.

При заказе регуляторов-стабилизаторов с присоединительными фланцами PN16 обязательно необходимо указывать в заявке: «с присоединительными фланцами PN16».

ОБЛАСТЬ ПРИМЕНЕНИЯ:

Системы газораспределения и газопотребления, газовые рампы горелочных устройств, газомоторные установки и газопоршневые электростанции.

УСЛОВИЯ ПРИМЕНЕНИЯ:

Регуляторы нулевого давления при наличии избыточного давления на входе регулятора и вакуумметрического давления на выходе — регулятор находится в открытом состоянии. При достижении выходного давления нулевого значения (потребление газа отсутствует) регулятор закрывается.

Читать еще:  Прибор для регулировки напряжения в сети

Регулятор соотношения газ-воздух управляется давлением из воздушной линии. Он регулирует выходное давление газа за регулятором в соотношении 1:1 к управляющему давлению воздуха. Тепловая мощность горелки изменяется с помощью исполнительного механизма, установленного на воздушной линии. Изменение давления в горелке оказывает одинаковое воздействие на расход газа и воздуха, так что газовоздушная смесь не изменяется. Регулирующая пружина позволяет увеличить диапазон соотношения до величины 1:10.

МАТЕРИАЛ КОРПУСА:

  • Алюминиевые сплавы АК12ОЧ, АК12ПЧ.

КЛИМАТИЧЕСКОЕ ИСПОЛНЕНИЕ:

  • У3.1 (-30. +60 °C);
  • У2 (-40. +60 °C).

МАКСИМАЛЬНОЕ ДАВЛЕНИЕ НА ВХОДЕ:

  • Для регуляторов нулевого давления: 0,5 бар (500 мбар);
  • Для регуляторов соотношения газ-воздух: 0,2 бар (200 мбар).

ДИАПАЗОН ДАВЛЕНИЙ НА ВЫХОДЕ:

  • Для регуляторов нулевого давления: (-3. +5) мбар;
  • Для регуляторов соотношения газ-воздух: (-10. +200) мбар.

МОНТАЖНОЕ ПОЛОЖЕНИЕ:

  • Любое, за исключением, когда труба располагается ниже продольной оси регулятора.

СРЕДНИЙ СРОК СЛУЖБЫ СТАБИЛИЗАТОРА ДАВЛЕНИЯ ГАЗА:

Регулятор РС2 1 /2-0,5-Н (исполнение: с присоединительными фланцами PN 16), У3.1.

СП ТермоБрест ООО

Бресту 1000 лет

Каталог продукции
Структура обозначения РС

Структура обозначения

1 2 3 4 5 6 7

РС Х — Х — Х — ХХХ — Х — Х

  • У3.1 (-30. +60 °С);
  • У2 (-40. +60 °С).
  • муфтовые — DN 15 — 50;
  • фланцевые — DN 15 — 150.

Фланцы регуляторов соответствуют по ГОСТ 33259, тип 01, PN 6 (до 0,6 МПа).
По спецзаказу возможно изготовление регуляторов давления на DN 32 — 100 по ГОСТ 33259, тип 01, PN 16 (до 1,6 МПа).

Предназначение

Регуляторы-стабилизаторы давления предназначены для снижения, регулирования и поддержания давления (расхода) углеводородных газов, газовых фаз сжиженных газов, сжатого воздуха и других неагрессивных газов на выходе постоянным в заданных пределах независимо от изменений входного давления и работают без использования постороннего источника энергии.

Предохранительно-сбросной клапан, входящий в состав регулятора давления, производит выпуск газа в атмосферу при незначительном повышении контролируемого давления на выходе.

Предохранительно-запорный клапан, входящий в состав регулятора давления, прекращает подачу газа при значительном (недопустимом) повышении давления на выходе в случае возникновения каких-либо аварийных ситуаций.

Регуляторы-стабилизаторы давления в конструкцию которых входят одновременно предохранительно-сбросной и предохранительно-запорный клапаны включают в себя функции сброса и отсечки.

Область применения регуляторов-стабилизаторов давления — газовые регуляторные пункты и установки, отопительные котельные, газопоршневые электростанции, газовые горелки, а также аналогичные приборы и установки, где требуется редуцирование и поддержание стабильной величины давления газа.

Регуляторы расхода воздуха. Их функции, проектирование и пуско- наладка систем с переменным расходом

При рассмотрении систем кондиционирования c переменным расходом воздуха, особенно для больших офисных зданий, часто упускают из виду возможности при помощи ряда небольших дополнительных элементов значительно увеличить потенциал энергосбережения. Современные регуляторы расхода воздуха, укомплектованные электронными блоками, могут применяться в различных вариантах технических решений: от простых децентрализованных регуляторов до сложных систем управления целыми зданиями. Данная статья, иллюстрированная практическими примерами, демонстрирует каким образом при помощи небольших систем возможно удовлетворить требования кондиционирования воздуха и как получить максимальный эффект от их установки с минимальными трудозатратами на этапе проектирования.

Рис. 1. Схема регулятора расхода воздуха

Рис. 1. Схема регулятора расхода воздуха

Рис. 2. Устройство регулирования температуры помещения для систем с переменным расходом воздуха

Рис. 2. Устройство регулирования температуры помещения для систем с переменным расходом воздуха

Рис. 3. Схема системы с переменным расходом воздуха на примере Интернет-кафе

Рис. 3. Схема системы с переменным расходом воздуха на примере Интернет-кафе

Рис. 4. Регулятор расхода воздуха TVR-Easy

Рис. 4. Регулятор расхода воздуха TVR-Easy

Рис. 5. Монтаж VAV-системы

Рис. 5. Монтаж VAV-системы

Рис. 6. Схема электропроводки для помещения с регулятором расхода приточного и вытяжного воздуха с переменным расходом

Рис. 6. Схема электропроводки для помещения с регулятором расхода приточного и вытяжного воздуха с переменным расходом

Установка регуляторов с переменным расходом воздуха— одно из наиболее выигрышных на сегодняшний день решений, поскольку возможно практически для всех объектов и предполагает расход ровно такого количества энергии, сколько необходимо для поддержания комфортных условий. При сокращении потока воздуха эксплуатационные расходы значительно снижаются.

При этом уменьшается не только общая мощность вентиляции, но и энергопотребление для кондиционирования воздуха (нагрева, охлаждения, увлажнения, осушения), а, кроме того, увеличивается срок службы фильтров. Критериями в пользу регуляторов служат не просто высокие возможности регулирования. Еще один плюс— эффективное управление затратами на эксплуатацию, например, намного рентабельнее уменьшить вентиляцию неэксплуатируемого помещения, вместо того, чтобы полностью отключать приток воздуха. Это позволит избежать повторного обогрева помещения и, соответственно, значительных трат на обогрев.

Функции регулятора расхода воздуха

Мы должны провести границу между регулятором расхода воздуха (VAV-регулятором), которому требуется электрическая или пневматическая энергия и механическим регулятором. Последний наиболее часто используется как регулятор с постоянным расходом воздуха. В этой статье мы будем рассматривать устройства, оснащенные электронными компонентами.

Расход воздуха регулируется при помощи контура управления, реализующего функции измерения, сравнения и корректировки. Датчик перепада давления, которым оснащен VAV-регулятор, осуществляет усредненное измерение. Он обеспечивает требуемую точность регулирования даже в условиях непрямолинейного входа/выхода воздуха. Перепад давлений, так называемое «эффективное» давление, пропорциональное динамическому давлению в измерительном устройстве, преобразуется в электрический сигнал и обрабатывается контроллером.

Контроллер сравнивает фактическое значение с текущим заданием и, при наличии отклонения, формирует сигнал на электропривод, реагируя на который, створка регулирующего клапана занимает требуемое положение. Поток воздуха остается неизменным независимо от давления в воздуховоде (рис. 1). Децентрализованное регулирование предполагает управление температурой воздуха в каждом из помещений, обслуживаемых системой.

Как следствие, значение температуры устанавливается между минимальным и максимальным значением расхода. Регулировка осуществляется в этих пределах, основываясь на сигнале от регулятора температуры помещения. Необходимое условие правильной эксплуатации системы — поддержание надлежащего давления в воздуховоде системы. Вся необходимая информация о минимальном перепаде давления для конкретной системы указана в технических характеристиках оборудования.

При установке минимального перепада давления в системе должны учитываться потери во всех воздуховодах и компонентах, как перед, так и после регулятора расхода воздуха.

Компоненты регулятора

Регуляторы температуры и расхода воздуха наибольшее распространение получили вVAV-системах. Регулятор температуры помещения может быть дополнительно установлен в электрический контур в качестве многоступенчатого устройства (рис. 2).Следующие компоненты — необходимые функциональные элементы полной цепи регулирования:

  • регулятор температуры помещения, подключенный к контроллеру.
  • датчик расхода воздуха и измерительный преобразователь.
  • регуляторы расхода воздуха с электроприводом клапана.

Поставщики контроллеров предлагают также различные специфические компоненты для реализации конкретных проектов, которые могут комбинировать функции вышеуказанных датчиков и регуляторов. Также за каждую функцию может отвечать отдельный элемент; однако для этого потребуется кабельная проводка и пуско-наладка. В большинстве случаев в каждом из элементов регуляторов объединены две и более функций.

Читать еще:  Как отрегулировать зазор пластикового окна

Разработка проекта

Пример, приведенный на рис. 3, характерен для децентрализованного регулирования. Данная комбинация функций регулирования представляет собой проработанное решение, которое можно использовать при проектировании управления инженерными системами здания. Регулятор температуры помещения включает комнатный модуль, который состоит из регулятора, корректора уставки и датчика температуры.

Он монтируется в месте, где обеспечивается объективное измерение температуры. Непосредственно в VAV-регуляторах, устанавливаемых на воздуховодах, применяется так называемый компактный контроллер, включающий в себя преобразователь сигнала от датчика «эффективного» давления, блок электронного регулятора расхода воздуха и электропривод клапана в объединенном устройстве (рис. 4).

Межкомпонентная работа обоих контроллеров выполняется при помощи сигнала с изменяемым напряжением. Электрическая проводка чрезвычайно проста— для электропитания обоих контроллеров требуется только дополнительный трансформатор переменного тока на 24 В. На этапе разработки проекта требуемые характеристики потока воздуха для конкретных помещений вычисляются совместно с определением типоразмеров регуляторов расхода воздуха. При этом важно предусмотреть их интеграцию в систему в целом, не упуская деталей.

Выбор устройств

Как правило, определяющий критерий при выборе устройств — акустические характеристики. Если требования предполагают пониженный уровень шума, обычно используют устройства со встроенными шумопоглотителями. Однако для большинства случаев вполне достаточно установить один регулятор расхода воздуха с круглым или прямоугольным сечением.

Оборудование для регулирования выбирается таким образом, чтобы серийный регулятор температуры (включая датчик температуры и корректор уставки) управлял компактным контроллером. Установка значений расхода воздуха (Vmin и Vmax) осуществляется при помощи компактного контроллера.В дальнейшей корректировке необходимости, как правило, нет.

Типоразмеры устройств

Изначально типоразмер оборудования определяется требуемой величиной расхода воздуха. Однако следует учесть, что возможно возникнет необходимость в последующем увеличении или уменьшении номинального расхода воздуха. Следующий этап — определение уровня звукового давления в помещении для выбранного типоразмера устройства.

При определенных обстоятельствах эта процедура может принести очень хорошие результаты, позволяя отказаться от дальнейших мероприятий по снижению шума. Для оценки ожидаемого уровня шума обратимся к документации изготовителей. Является общепринятым построение графика затухания шума в помещении для данного процесса. Для достижения уровня 45 дБ(А) в любом помещении требуется регулятор с круглым сечением и дополнительный шумоглушитель.

Обратите внимание, если результирующие уровни шума близки к определенному общему уровню шума помещения. В этом случае требуется полный акустический анализ с учетом всех других источников шума.

Расчет системы воздуховодов

Традиционно выбор типоразмера всей системы воздуховодов основывается на скорости движения воздуха в ней от 6 до 8 м/с.Обычно нет необходимости проводить более подробный расчет, рассматривая каждый из воздуховодов отдельно. Регулятор расхода воздуха выполняет задачу регулирования, не зависящую от давления в воздуховоде. Однако, наибольшее сечение воздуховода должно быть рассчитано с учетом максимального значения расхода воздуха для определения типоразмера вентилятора и регулятора поддержания давления в воздуховоде.

Важно определить место установки датчика давления в воздуховоде. Как правило его размещают на выходе воздуховода после вентилятора, но до первого ответвления. Только в этом случае будет гарантировано достаточное давление системы при всех условиях эксплуатации.

Для опытного технического персонала нет необходимости в специальном обучении перед монтажом системы. Однако следует обратить внимание на то, что компоненты регулятора, несмотря на отсутствие необходимости в обслуживании и долгий срок службы, могут отказать или возникнет необходимость в проверке. По этой причине регуляторы расхода воздуха должны быть смонтированы таким образом, чтобы к месту размещения компонентов был обеспечен свободный доступ (рис. 5). В случае необходимости устройства могут быть развернуты (если изготовителем не предусмотрена конкретная ориентация при монтаже).

Проектирование электроснабжения

Для большинства серийных регуляторов расхода воздуха необходимо электропитание 24 В переменного тока. Поэтому нужно либо подводить проводку в 24 В, либо использовать трансформаторы для каждого помещения/группы помещений. В приведенном примере предпочтителен второй вариант (рис. 6). Пуско-наладочные работы При вводе в эксплуатацию необходимость в регулировке обычно отсутствует.

Перед запуском системы следует проверить все функции регулятора в каждом из помещений. Фактическое значение и установка компактного регулятора могут быть проверены при помощи корректора. Изготавливаемые в последнее время регуляторы снабжены контрольным индикатором для отображения параметров расхода воздуха (рис. 4).Несложно изменить границы расхода воздуха и после проведения монтажа.

Установить новые параметры можно при помощи корректора или непосредственно внести изменения в регулятор. Несмотря на то, что для регуляторов расхода воздуха не предусматривается обслуживание механических частей, функции прибора должны проверяться ежегодного в рамках технического обслуживания.

Из интервью журналу IKZ-HAUSTECHNIK Каковы наиболее распространенные ошибки во время проектирования и монтажа регуляторов расхода воздуха?

Клаус И. Тейтмейер: По опыту коллег из подразделения поддержки, а также на основании собственного опыта посещения множества вводимых в эксплуатацию и уже эксплуатируемых систем, можно сделать вывод об ошибках в двух областях: размещение оборудования и его подключение. Прежде всего, при выборе места размещения необходимо убедиться, что оно соответствует требованиям.

Если в проекте заложен регулятор расхода воздуха для каждого помещения, есть вероятность ошибок при монтаже, возможные последствия—потребуется остановка системы, дополнительные и ненужные трудозатраты. В случае монтажа при неправильном направлении потока воздуха устройство должно быть полностью демонтировано и установлено правильно. Основная проблема, к которой мы всегда возвращаемся, — это возможность доступа к компонентам регулятора.

Прибор должен быть обслуживаемым, ведь даже наилучшие технологии могут отказать, кроме того, часто возникает необходимость в изменении электроподключения. Необходимо пересмотреть оценку системы, если в помещении были установлены или удалены дополнительные источники тепла или рабочие места, и, с учетом этого изменить параметры регуляторов. Ошибки при кабельной разводке сложно диагностировать до ввода в эксплуатацию, для их устранения приходится переделывать соединения либо менять кабели.

Ваши рекомендации как специалиста: как избежать подобных ошибок?

Тейтмейер: Большинства ошибок можно избежать, если монтажники полностью информированы и их деятельность скоординирована. Часто они остаются один на один с оборудованием в отсутствии надлежащих технических инструкций. Некачественная работа недопустима, однако все мы знаем, что это случается. Поэтому всегда лучше рассчитывать, и желательно как можно раньше, еще на этапе планирования, что устройства должны быть размещены в доступных для обслуживания местах. На этапе строительства необходимо инспектирование технических специалистов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector