Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лабораторный блок питания своими руками 0-30В 0-5А

Лабораторный блок питания своими руками 0-30В 0-5А

лабораторный блок питания своими руками

Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.

Лабораторный блок питания своими руками 0-30В 0-5А

Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.

Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.

Лабораторный блок питания — пошаговая сборка

Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.

лабораторный блок питания сборка

После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.

лабораторный блок питания плата

Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.

плата лабораторного блока питания

Шаг. 1 Установка элементов, отвечающих за регулировку напряжения

Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.

Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.

лабораторный блок питания своими руками 0 30в

На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.

лабораторный блок питания с регулировкой напряжения

Шаг. 2 Установка конденсаторов фильтра

Устанавливаем конденсаторы С3; С4; С8С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.

лабораторный блок питания своими руками

Шаг. 3 Подключение силовых транзисторов

Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.

лабораторный блок питания 30в

При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.

мощный лабораторный блок питания

Шаг. 4 Балансировка транзисторов

Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.

Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.

Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности — следует уменьшить R1 до 10 Ом.

Шаг. 5 Подключение питания для ОУ и периферии

В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.

Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.

лабораторный блок питания схема

После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.

Шаг. 6 Установка операционного усилителя и элементов стабилизации тока

Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .

Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.

лабораторный блок питания 30в своими руками

С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.

Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.

лабораторный блок питания

На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.

Шаг. 7 Установка нуля

Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).

Читать еще:  Схемы зарядных устройств с регулировками тока и напряжения

регулировка lm317 от нуля

Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.

С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.

лабораторный блок питания своими руками

Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.

лабораторный блок питания 0-30В

Шаг. 8 Установка защитных диодов

Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.

Шаг. 9 Настройка ограничения максимального тока

  • Выставляем на блоке 12В.
  • Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
  • Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
  • Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
  • С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.

Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.

Шаг. 10 Подключение вольтамперметра

При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.

Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.

лабораторный блок питания своими руками

Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!

лабораторный блок питания своими руками

Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.

Мощный лабораторный источник питания 0-25В, 7А

Для настройки, ремонта автоэлектронных и радиотехнических устройств или зарядки аккумуляторных батарей необходимо иметь хороший источник питания.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам.

Основные требования, которым должен удовлетворять такой источник питания:

  • регулировка напряжения в диапазоне 0 — 25 В;
  • способность обеспечить ток в нагрузке до 7 А при минимальных пульсациях;
  • регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе.

Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение. Всем этим требованиям удовлетворяет предлагаемая схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока.

Основные технические характеристики источника питания:

  • плавная регулировка напряжения в диапазоне от 0 до 25 В;
  • напряжение пульсаций, не более 1 мВ;
  • плавная регулировка тока ограничения (защиты) от 0 до 7 А;
  • коэффициент нестабильности по напряжению не хуже 0,001 %/В;
  • коэффициент нестабильности по току не хуже 0,01 %/В;
  • КПД источника не хуже 0,6.

Принципиальная схема

Электрическая схема источника питания, состоит из схемы управления, трансформатора (Т1), выпрямителя (VD4 ч- VD7), силовых регулирующих транзисторов VT3, VT4 и блока коммутации обмоток трансформатора.

Схема управления собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельного трансформатора Т2. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства.

Для облегчения теплового режима работы силовых регулирующих транзисторов применен трансформатор с секционной вторичной обмоткой. Отводы автоматически переключаются в зависимости от уровня выходного напряжения при помощи реле К1, К2. Что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 и VT4 сравнительно небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации предназначен для того, чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 6,2 В — включается К2; при превышения уровня 15,3 В включается К1(в этом случае с обмоток трансформатора поступает максимальное напряжение).

Указанные пороги задаются используемыми стабилитронами (VD10, VD12). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т. е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от сопротивления регуляторов «I» (R21,R22). Стабилизатор напряжения собран на элементах DA3, VT5, VT6.

Схема мощного источника питания с регулировкой напряжения от 0 до 25В и током до 7А

Рис. 1. Принципиальная схема лабораторного источника питания с регулировкой тока ограничения.

Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами «грубо» (R9) и «точно» (R10). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R9, RIO, R11 поступает на неинвертирующий вход 2 операционного усилителя DA3.

На этот же вход через резисторы R3, R5, R7 подается опорное напряжение +9 вольт. В момент включения схемы на выходе 12 DA3.1 будет увеличиваться положительное напряжение (оно через транзистор VT5 приходит на управление VT4) до тех пор, пока напряжение на выходных клеммах X1 и Х2 не достигнет установленного резисторами R9, R10 уровня.

За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход 2 усилителя DA3.1, выполняется стабилизация выходного напряжения источника питания. При этом выходное напряжение будет определяться соотношением:

Мощный лабораторный источник питания 0-25В, 7А, схема

Соответственно изменяя сопротивление резисторов R9 «грубо» и R10 «точно», можно менять выходное напряжение (Uвых) от 0 до 25 В. Когда к выходу источника питания подключена нагрузка, в его выходной цепи начинает протекать ток, создающий положительное падение напряжения на резисторе R23 (относительно общего провода схемы).

Это напряжение поступает через резистор R21, R22 в точку соединения R8, R12. Со стабилитрона VD9 через R6, R8 подается опорное отрицательное напряжение — 9 вольт.

Читать еще:  Регулировка навесных кухонных шкафов на рейке

Операционный усилитель DA3.2 усиливает разность между ними. Пока разность отрицательная (т. е. выходной ток меньше установленной резисторами R23, R24 величины), на выходе 10 DA3.2 действует + 15 В. Транзистор VT6 будет закрыт и эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

При увеличении тока нагрузки до величины, при которой на входе 7 DA3.2 появится положительное напряжение, на выходе 10 DA3.2 будет отрицательное напряжение и транзистор VT6 приоткроется. В цепи R16, R17, HL1 будет протекать ток, который уменьшит открывающее напряжение на базе регулирующего силового транзистора VT4.

Свечение красного светодиода (HL1) сигнализирует о переходе схемы в режим ограничения тока. В этом случае выходное напряжение источника питания снизится до такой величины, при которой выходной ток будет иметь значение, достаточное для того, чтобы напряжение обратной связи по току (Uoc), снимаемое с резистора R10, и опорное в точке соединения R8, R12, R22 взаимно компенсировались, т. е. появился нулевой потенциал.

В результате выходной ток источника окажется ограниченным на уровне, задаваемым положением движка резисторов R21, R22. При этом ток в выходной цепи будет определяться соотношением:

Мощный лабораторный источник питания 0-25В, 7А, схема

Диоды (VD11) на входах операционных усилителей обеспечивают защиту микросхемы от повреждения в случае включения её без обратной связи или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства.

Конденсатор С8 ограничивает полосу усиливаемых частот ОУ, что предотвращает самовозбуждение и повышает устойчивость работы схемы.

Настройка

При безошибочном монтаже в схеме узла управления потребуется настроить только максимум диапазона регулировки выходного напряжения 0 : 25 В резисторомR7 и максимальный ток защиты 7 А — резистором R8.

Блок коммутации в настройке не нуждается. Необходимо только проверить пороги переключения реле К1, К2 и соответствующее увеличение напряжения на конденсаторе С3.

При работе схемы в режиме стабилизации напряжения светится зеленый светодиод (HL2), а при переходе в режим стабилизации тока — красный (HL1).

Детали

Подстроечные резисторы R7 и R8 — типа СПЗ-19а; переменные резисторы R9, R10, R21, R22 — типа СПЗ-4а или ППБ-1 А; постоянные резисторы R23 — типа С5-16МВ на 5 Вт, остальные из серии МЛТ или С2-23 соответствующей мощности.

Конденсаторы С6, С7, С8, C10 типа КІО-17, электролитические С1 — С5, С9 типа К50-35 (К50-32). Микросхема DA1 может быть заменена импортным аналогом 78L15; DA2 — на 79L15; DA3 на рА747 или двумя микросхемами 140УД7.

Светодиоды HL1, HL2 подойдут любые с разным цветом свечения. Силовые транзисторы устанавливаются на радиатор площадью около 1000 см^2.

Два силовых транзистора устанавливается параллельно для обеспечения надёжной работы устройства в случае короткого замыкания на выходных клеммах.

В наихудшем случае силовые транзисторы кратковременно должны выдерживать перегрузку по мощности Р = Ubx*I = 25×7= 175 Вт. А один транзистор КТ827А может рассеивать мощность не более 125 Вт. Диоды VD4 — VD7 надо установить на небольшой радиатор.

Реле К1, К2 применены типоразмера R-15 (польского производства) с обмоткой на рабочее напряжение 24 В (сопротивление обмотки 430 Ом) — они за счет бескорпусного исполнения имеют малые габариты и достаточно мощные переключающие контакты. Можно использовать и отечественные реле типа РЭН29 (0001), РЭН32 (0201).

Переключающие напряжение с трансформатора Т1 реле К1 и К2 инерционны и не обеспечивают мгновенное снижение напряжения, приходящего со вторичной обмотки Т1, но они уменьшат тепловую рассеиваемую мощность на силовых транзисторах при длительной работе источника.

Микроамперметр РА1 малогабаритный типа М42303 или аналогичный с внутренним шунтом на ток до 10 А. Для удобства эксплуатации источника питания схему можно дополнить вольтметром, показывающим выходное напряжение.

В качестве сетевого трансформатора Т1 используется промышленный трансформатор типа ТППЗ19-127/220-50. Т2 — типа ТПП259-127/220-50. Трансформатор можно изготовить и самостоятельно на основе промышленного трансформатора мощностью 200 Вт, намотав все обмотки (Т1 и Т2) на одном трансформаторе.

Источник: Ходасевич А. Г, Ходасевич Т. И. — Зарядные и пуско-зарядные устройства.

Лабораторный блок питания для рабочего места (3-18В 4А)

При ремонте и конструировании различной электронной техники возникает необходимость в мощном лабораторном блоке питания с регулировкой в широких пределах выходного напряжения и тока.

Исходя из вышесказанного был разработан и изготовлен относительно несложный блок питания, не требующий дефицитных деталей, имеющий следующие параметры и возможности:

  • выходное стабилизированное напряжение регулируется в пределах 3. 18 В, а при токе 4 А — в пределах 3. 16 В;
  • максимальный выходной ток 4 А;
  • размах пульсаций и шумов при выходном токе 3 А не более 2 мВ;
  • ток короткого замыкания не более 15 мА;
  • ограничение выходного тока регулируется в пределах 0,35. 4 А;
  • самозапуск после устранения короткого замыкания и звуковая сигнализация возникновения короткого замыкания;
  • световая индикация режима стабилизации тока;
  • индикация потребляемого тока;
  • возможность зарядки аккумуляторных батарей напряжением от 1,2 до 15 В стабильным током от 0,35 до 4 А;
  • питание паяльника ЭПСН-12-25 Вт от отдельной обмотки.

Напряжение переменного тока с обмоток II и III трансформатора Т1 (рис. 1.1) через предохранитель FU2 и переключатель SB1 поступает на выпрямитель на мощных диодах VD1-VD4 (рис. 1.2).

Выпрямленное напряжение фильтруется конденсаторами С4, С5. На диодах VD5 и VD6 выполнен отдельный выпрямитель для питания операционного усилителя (ОУ) DA1 типа К140УД7, что позволяет питать усилитель DA1 напряжением с меньшим уровнем пульсаций.

На этом ОУ выполнен элемент сравнения выходного напряжения с опорным. Максимальное однополярное напряжения питания для К140УД7-40 В.

Блок питания для рабочего места (3-18В 4А)

Напряжение на стабилитроны VD18 и VD19 подается с генератора стабильного тока на полевом транзисторе VT7. Конденсатор С16 уменьшает шумы стабилитронов. Выходное напряжение стабилизатора регулируется переменным резистором R20. Усилитель выходного тока ОУ выполнен на транзисторах ѴТЗ, ѴТ4, ѴТ5. Диапазоны выходных напряжений переключаются кнопкой SB1. Защита от короткого замыкания (КЗ) выполнена на транзисторе ѴТ1. При КЗ выхода стабилизатора напряжение на эмиттере ѴТ1 становится меньше напряжения на его базе, ѴТ1 открывается, напряжение на базе ѴТ5 уменьшается почти до нуля, и транзисторы ѴТЗ-ѴТ5 закрываются. Небольшой выходной ток, протекающий по цепи VD15, R10, необходим для запуска стабилизатора после устранения причины КЗ.

Конденсатор С6 необходим для запуска стабилизатора в момент включения блока питания в сеть, если к выходу стабилизатора подключена нагрузка. Диод VD13 предотвращает пробой перехода база-эмиттер транзистора ѴТ1, когда напряжение на выходе стабилизатора больше 6 В.

Блок питания для рабочего места (3-18В 4А)

Узел ограничения выходного тока выполнен на транзисторах ѴТ2 и ѴТ6. При увеличении падения напряжения на R2 начинает открываться маломощный германиевый транзистор VT2. При подходе к режиму ограничения выходного тока начинает слабо светиться светодиод VD14. При дальнейшем увеличении выходного тока транзистор VT2 открывается еще больше, вслед за ним открывается VT6, который через резистор R13 шунтирует выход операционного усилителя. Напряжение на базе VT5 снижается, уменьшается напряжение на выходе стабилизатора, схема входит в режим стабилизации выходного тока. Конденсатор СЮ умень шает пульсации на нагрузке при работающем ограничителе тока. Потребляемый ток индицируется микроамперметром РА1. Его чувствительность устанавливается резистором R3.

Читать еще:  Как регулировать ток в зарядном устройстве для аккумулятора

Цепь С14 R14 служит для устранения самовозбуждения стабилизатора на высоких частотах, С20 — на низких. Переключатель SB1 на схеме показан в положении 7. 18 В.

Сигнализатор короткого замыкания выполнен на КМОП микросхеме DD1 и транзисторах VT8 и VT9. При напряжении на выходе стабилизатора менее 0,6 В транзистор VT8 закрывается, на выв. 1 DD1.1 поступает логическая единица. Генератор на DD1.1 и DD1.2 начинает работать с частотой 4. 6 Гц, периодически запуская второй генератор на DD1.3 и DD1.4, работающий на частоте 300. 600 Гц. В результате на базу VT9 поступают пачки импульсов, и телефонный капсюль ВА1 издает прерывистый звуковой сигнал.

Микросхема DD1 питается от параметрического стабилизатора на элементах R15, VD16, VD17. Стабилитрон VD17 предотвращает ошибочное срабатывание сигнализатора при выключении блока питания.

Детали. Постоянные резисторы типа МЯТ, С2-23 мощностью не менее указанной на схеме. R2 — пять резисторов МЛТ-2 по 2,7 Ом каждый. Переменный резистор R5 желательно проволочный, например, ППЗ-12 на 68. 220 Ом. Переменный резистор R20 — СПЗ-ЗОА, СП1-1, СПЗ-42 сопротивлением 4,7. 15 кОм. Оксидные конденсаторы К50-16, К50-35, К50-24 или аналогичные импортные. С4 и С5 можно заменить одним К50-18 на 10000. 20000 мкФ, 63 В. Остальные конденсаторы — К73-15А, К73-9, К73-17, МБМ. Не рекомендуется применять отечественные керамические конденсаторы по причине их низкой надежности.

Диоды VD1-VD4, VD20-Kfl202, КД203, Д242, Д243, Д244 с любыми индексами. Диоды VD7-VD11, VD21 заменимы на любые из КД208, КД522, КД102, КД103, КД105, 1 N4001-1 N4007, диоды КД209А — на любые из КД208, КД212, КД221, КД105. Стабилитроны: VD16 — любой на 10. 12 В; VD17 — КС156А, КС147А. VD18 заменим на любой импортный на 2. 3 В, например, 1N5985B, 1N5986B.

Его можно заменить на один светодиод АП307Б, соединенный последовательно с диодом типа КД521, КД522. VD19 — любой маломощный на 5,5. 7 В, например, КС156А, КС162А, КС168А, 1N5995B, 1N4735A. Светодиоды — любые видимого спектра, подходящие по габаритам. VD14 — желательно красный, например КИПД21 (Г-К).

Транзисторы КТ503 с индексами Б-Е, или КТ602, КТ608, КТ630, КТ645, КТ646, 2SC2331 с любыми индексами. МП26Б заменим на любой из МП25, МП26. Мощный транзистор КТ865А можно заменить на КТ818 с любым индексом в металлическом корпусе или на относительно дешевые импортные — 2SA1106, 2SA1186, 2SA1301. Транзистор КТ805АМ заменяется на любой из серий КТ815, КТ817, КТ819, КТ961. Вместо КТ3102Б-КТ3102А, КТ315Г, КТ503Г, КТ645А или 2SD734 с коэффициентом передачи тока базы не менее 200. КПЗОЗА заменим на любой из этой серии с начальным током стока не более 3 мА. Транзистор VT8 — любой из серий КТ312, КТ315, КТ3102, SS9014.

Микросхему DA1 К140УД7 можно заменить на К140УД6, КР140УД708, КР140УД608, КР140УД18. Вместо К561ЛА7 можно использовать микросхемы 564ЛА7, КР1561ЛА7 или собрать аналогичный генератор на других 2-4-входовых инверторах этих серий.

Микроамперметр РА1 — М4387, М4761 или любой другой малогабаритный. ВА1 — любой телефонный капсюль или малогабаритный динамик с сопротивлением катушки не менее 40 Ом.

Кнопка SB1 — П2К с четырьмя контактными группами. Для коммутации напряжения переменного тока три группы контактов следует соединить параллельно, а четвертую использовать для переключения стабилитронов. Кнопка SB2 — такая же, как и SB1 или тумблер на два-три направления и ток 2. 5 А.

Трансформатор можно выполнить на любом стальном магни-топроводе с габаритной мощностью 90. 150 Вт. Использован трансформатор ТС-90 от телевизора «Каскад 225» (УСТ61-1). С трансформатора предварительно удалены все вторичные обмотки.

Обмотки II и III включенные параллельно, намотаны проводом ПЭВ-2 0,68 мм из расчета примерно 4,5 витка на 1 В. Они попарно должны содержать строго одинаковое число витков. Обмотки IV и V предназначены для питания низковольтного паяльника ЭПСН-12-25 Вт или аналогичного. Они намотаны проводом ПЭВ-2 диаметром 0,75 мм. Первичная обмотка трансформатора включена на напряжение 237 В, что снижает ток холостого хода трансформатора и, соответственно, повышает надёжность блока питания в целом.

Диоды VD1-VD4 размещаются на общем теплоотводе 150 см2 через изолирующие прокладки. Транзистор ѴТЗ устанавливается на ребристый или игольчатый радиатор площадью не менее 500 см2, транзистор ѴТ4 — на радиатор площадью 10 см2. Если длина провода от выв. 2 DA1 до R20 более 15 см, то необходимо применить экранированный провод.

Провода от выхода выпрямителя VD1-VD4 припаиваются непосредственно к выводам оксидных конденсаторов С4 и С5. К ним же припаивается отдельным проводом левый (по схеме) вывод резистора R2.

Стабилизатор блока питания представляет собой устройство с большим усилением и глубокими ООС, поэтому, при его монтаже следует придерживаться тех же правил, что и при монтаже устройств высококачественного звуковоспроизведения.

При эксплуатации блока питания нужно следить за тем, чтобы суммарная мощность потребления по всем вторичным обмоткам не превышала максимально допустимую для примененного трансформатора.

Также следует исключить подогрев трансформатором и радиатором транзистора ѴТЗ оксидных конденсаторов, особенно СЗ и С4. Если корпус будет типа «мини-башни», то транзистор Т1 следует разместить в верхней ее части, а мощный радиатор частично вынести за пределы корпуса, например, оформив его в виде задней стенки. Элементы налаживания устройства. R3 — чувствительность микроамперметра; R4 — верхний порог ограничения тока нагрузки; R19 и R21 — минимальное и максимальное напряжения диапазона 7. 18 В; R23 — тон звукового сигнала; R25 — громкость.

Литература: А. П. Кашкаров, А. Л. Бутов — Радиолюбителям схемы, Москва 2008

Схемы лабораторных блоков питания с регулировкой напряжения и тока

Добавлено 04.03.2012
Просмотров 901527

Добавлено 15.01.2012
Просмотров 825048

Добавлено 30.07.2011
Просмотров 815310

Добавлено 17.10.2011
Просмотров 763305

Добавлено 19.10.2013
Просмотров 755354

Добавлено 14.10.2011
Просмотров 616310

Добавлено 09.04.2014
Просмотров 539303

Добавлено 14.06.2013
Просмотров 528597

Добавлено 30.09.2015
Просмотров 523690

Добавлено 09.04.2012
Просмотров 514346

Добавлено 13.12.2016
Просмотров 505750

Добавлено 19.10.2014
Просмотров 479561

Добавлено 10.08.2013
Просмотров 455087

Добавлено 09.11.2011
Просмотров 415761

Добавлено 20.05.2016
Просмотров 372601

Добавлено 19.05.2013
Просмотров 350198

Добавлено 23.07.2015
Просмотров 305227

Добавлено 12.12.2013
Просмотров 292950

Добавлено 08.05.2011
Просмотров 275703

Добавлено 05.04.2012
Просмотров 274639

Добавлено 16.12.2013
Просмотров 266114

Добавлено 01.03.2016
Просмотров 262819

Добавлено 11.12.2011
Просмотров 256743

Добавлено 05.05.2011
Просмотров 252621

Добавлено 30.07.2014
Просмотров 249101

Добавлено 17.10.2012
Просмотров 247753

Добавлено 31.01.2012
Просмотров 233879

Добавлено 29.12.2012
Просмотров 232735

Добавлено 12.06.2014
Просмотров 227332

Добавлено 05.04.2017
Просмотров 226347

» Зарег. на сайте
Всего: 6856
Новых за месяц: 33
Новых за неделю: 6
Новых вчера: 1
Новых сегодня: 0 » Из них
Администраторов: 1
Модераторов: 2
Проверенных: 3
Обычных юзеров: 6850 —>

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector