Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор прямоугольных импульсов

Генератор прямоугольных импульсов

Прямоугольный импульс на осциллограммеАмплитуда генерируемого сигнала в таких генераторах очень стабильна и близка к напряжению питания. Но форма колебаний весьма далека от синусоидальной — сигнал получается импульсным, причем длительность импульсов и пауз между ними легко регулируется. Импульсам легко придать вид меандра, когда длительность импульса равна длительности паузы между ними.

Основной и широко распространенный вид релаксационного генератора — симметричный мультивибратор на двух транзисторах, схема которого показана на рисунке ниже. В нем два стандартных усилительных каскада на транзисторах VT1 и VT2 соединены в последовательную цепочку, то есть выход одного каскада соединен со входом другого через разделительные конденсаторы С1 и С2. Они же определяют и частоту генерируемых колебаний F, точнее, их период Т. Напомню, что период и частота связаны простым соотношением

Если схема симметрична и номиналы деталей в обоих каскадах одинаковы, то и выходное напряжение имеет форму меандра.

релаксационный генератор — симметричный мультивибратор на двух транзисторах

Работает генератор так: сразу после включения, пока конденсаторы С1 и С2 не заряжены, транзисторы оказываются в «линейном» усилительном режиме, когда резисторами R1 и R2 задается некоторый малый ток базы, он определяет в Вст раз больший ток коллектора, и напряжение на коллекторах несколько меньше напряжения источника питания за счет падения напряжения на резисторах нагрузки R3 и R4. При этом малейшие изменения коллекторного напряжения (хотя бы из-за тепловых флуктуаций) одного транзистора передаются через конденсаторы С1 и С2 в цепь базы другого.

Предположим, что коллекторное напряжение VT1 чуть-чуть понизилось. Это изменение передается через конденсатор С2 в цепь базы VT2 и немного его запирает. Коллекторное напряжение VT2 возрастает, и это изменение передается конденсатором С1 на базу VT1, он отпирается, его коллекторный ток возрастает, а коллекторное напряжение понижается еще больше. Процесс происходит лавинообразно и очень быстро.

В результате транзистор VT1 оказывается полностью открыт, его коллекторное напряжение будет не более 0,05. 0,1 В, a VT2 — полностью заперт, и его коллекторное напряжение равно напряжению питания. Теперь надо ждать, пока перезарядятся конденсаторы С1 и С2 и транзистор VT2 приоткроется током, текущим через резистор смещения R2. Лавинообразный процесс пойдет в обратном направлении и приведет к полному открыванию транзистора VT2 и полному запиранию VT1. Теперь нужно ждать еще полпериода, нужные для перезарядки конденсаторов.

Время перезарядки определяется напряжением питания, током через резисторы Rl, R2 и емкостью конденсаторов Cl, С2. При этом говорят о «постоянной времени» цепочек Rl, С1 и R2, С2, примерно соответствующей периоду колебаний. Действительно, произведение сопротивления в омах на емкость в фарадах дает время в секундах. Для номиналов, указанных на схеме рисунка 1 (360 кОм и 4700 пФ), постоянная времени получается около 1,7 миллисекунды, что говорит о том, что частота мультивибратора будет лежать в звуковом диапазоне порядка сотен герц. Частота повышается при увеличении напряжения питания и уменьшении номиналов Rl, С1 и R2, С2.

Описанный генератор весьма неприхотлив: в нем можно использовать практически любые транзисторы и изменять номиналы элементов в широких пределах. К его выходам можно подключать высокоомные телефоны, чтобы услышать звуковые колебания, или даже громкоговоритель — динамическую головку с понижающим трансформатором, например абонентский трансляционный громкоговоритель. Так можно организовать, например, звуковой генератор для изучения азбуки Морзе. Телеграфный ключ ставят в цепи питания, последовательно с батареей.

Поскольку два противофазных выхода мультивибратора в радиолюбительской практике нужны редко, автор задался целью сконструировать более простой и экономичный генератор, содержащий меньше элементов. То, что получилось, показано на следующем рисунке. Здесь использованы два транзистора с разными типами проводимости — п-р-п и р-n-р. Открываются они одновременно, коллекторный ток первого транзистора служит током базы второго.

Генератор на двух транзисторах с разной проводимостью

Вместе транзисторы образуют также двухкаскадный усилитель, охваченный ПОС через цепочку R2,C1. Когда транзисторы запираются, напряжение на коллекторе VT2 (выход 1 В) падает до нуля, это падение передается через цепочку ПОС на базу VT1 и полностью его запирает. Когда конденсатор С1 зарядится до примерно 0,5 В на левой обкладке, транзистор VT1 приоткроется, через него потечет ток, вызывая еще больший ток транзистора VT2; напряжение на выходе начнет расти. Это возрастание передается на базу VT1, вызывая еще большее его открывание. Происходит вышеописанный лавинообразный процесс, полностью отпирающий оба транзистора. Через некоторое время, нужное для перезарядки С1, транзистор VT1 призакроется, поскольку ток через резистор большого номинала R1 недостаточен для его полного открывания, и лавинообразный процесс разовьется в обратном направлении.

Скважность генерируемых импульсов, то есть соотношение длительностей импульса и паузы, регулируется подбором резисторов R1 и R2, а частота колебаний — подбором емкости С1. Устойчивой генерации при выбранном напряжении питания добиваются подбором резистора R5. Им же в некоторых пределах можно регулировать выходное напряжение. Так, например, при указанных на схеме номиналах и напряжении питания 2,5 В (два дисковых щелочных аккумулятора) частота генерации составила 1 кГц, а выходное напряжение — ровно 1 В. Потребляемый от батареи ток получился около 0,2 мА, что говорит об очень высокой экономичности генератора.

Читать еще:  Регулировка напряжения ламп накаливания

Нагрузка генератора R3, R4 выполнена в виде делителя на 10, чтобы можно было снимать и меньшее напряжение сигнала, в данном случае 0,1 В. Еще меньшее напряжение (регулируемое) снимается с движка переменного резистора R4. Эта регулировка может оказаться полезной, если нужно определить или сравнить чувствительность телефонов, проверить высокочувствительный УНЧ, подав малый сигнал на его вход, и так далее. Если же таких задач не ставится, резистор R4 можно заменить постоянным или сделать еще одно звено делителя (0,01 В), добавив снизу еще резистор номиналом 27 Ом.

Сигнал прямоугольной формы с крутыми фронтами содержит широкий спектр частот — кроме основной частоты F, еще и ее нечетные гармоники 3F, 5F, 7F и так далее, вплоть до радиочастотного диапазона. Поэтому генератором можно проверять не только звуковую аппаратуру, но и радиоприемники. Конечно, амплитуда гармоник убывает с ростом их частоты, но достаточно чувствительный приемник позволяет прослушивать их во всем диапазоне длинных и средних волн.

Схема генератора прямоугольных импульсов представляет собой кольцо из двух инверторов. Функции первого из них выполняет транзистор VT2, на входе которого включен эмиттерный повторитель на транзисторе VT1. Это сделано для повышения входного сопротивления первого инвертора, благодаря чему появляется возможность генерации низких частот при относительно небольшой емкости конденсатора С7. На выходе генератора включен элемент DD1.2, выполняющий роль буферного элемента, улучшающего согласование выхода генератора с испытуемой цепью.

Схема генератора прямоугольных импульсов

Последовательно с времязадающим конденсатором (нужная величина емкости подбирается переключателем SA1) включен резистор R1, изменением сопротивления которого регулируется выходная частота генератора. Для регулировки скважности выходного сигнала (отношения периода импульса к его длительности) в схему введен резистор R2.

Устройство генерирует импульсы положительной полярности частотой 0,1 Гц. 1 МГц и скважностью 2. 500. Частотный диапазон генератора разбит на 7 поддиапазонов: 0,1. 1, 1 .10, 10. 100, 100. 1000 Гц и 1. 10, 10. 100, 100. 1000 кГц, которые устанавливаются переключателем SA1.

В схеме можно использовать кремниевые маломощные транзисторы с коэффициентом усиления не менее 50 (например, КТ312, КТ315, КТ342 и т. п.), интегральные схемы К155ЛНЗ, К155ЛН5.

Генератор прямоугольных импульсов на микроконтроллере на этой схеме, будет отличным пополнением в вашу домашнюю измерительную лабораторию.

Особенностью этой схемы генератора является фиксированное число частот, а точнее 31. И его можно применять в различных цифровых схемотехнических решениях, где требуется изменять частоты генератора автоматически или с помощью пятью переключателей.

Выбора той или иной частоты осуществляется с помощью посылки пятиразрядного двоичного кода на входе микроконтроллера.

Схема собрана на одном из самом распространенном микроконтроллере Attiny2313. Делитель частоты с регулируемым коэффициентом деления построен программно, используя частоту кварцевого генератора в роли опорной.

Для прошивки микроконтроллера Attiny2313 USB программатором, требуется выбрать следующие фьюзы CLKSEL 3…0 = 1111 в программе CodeVisionAVR

Генераторы негармонических сигналов

Различают синусоидальные (гармонические) и релаксационные (разрывные) колебания. В предыдущих главах были рассмотрены как раз генераторы гармонических колебаний, где используются колебательные контуры и различные фазовращающие цепи. Для получения релаксационных колебаний, которые могут быть почти прямоугольной формы, используется несколько иной принцип. Колебания возникают вследствие «освобождения» запаса энергии клапаном (ключом), отдающим энергию импульсами. Обычно в качестве клапанов или ключей применяют транзисторы, работающие в ключевом режиме, или приборы с отрицательным сопротивлением. Когда ключ закрыт, происходит накопление энергии, когда открыт — отдача энергии. При этом частота колебаний определяется параметрами схемы, режимом работы транзистора и напряжением источника питания. Колебания подобных генераторов легко и просто синхронизируются внешними импульсами различной формы.

Основное различие генераторов состоит в том, что в генераторах синусоидальных колебаний за период расходуется малая мощность, а в релаксационном генераторе — вся мощность, запасенная в реактивном элементе. Этим и объясняется разница в форме колебаний. Знакомство с релаксаторами начнем с мультивибраторов (не путать с вибратором).

Мультивибраторы

Мультивибратор представляет собой релаксационный генератор колебаний почти прямоугольной формы. Он является двухкаскадным усилителем на резисторах с положительной обратной связью, в котором выход каждого каскада соединен со входом другого. Само название «мультивибратор» происходит от двух слов: «мульти» — много и «вибратор» — источник колебаний, поскольку колебания мультивибратора содержат большое число гармоник. Мультивибратор может работать в автоколебательном режиме, режиме синхронизации и ждущем режиме. В автоколебательном режиме мультивибратор работает как генератор с самовозбуждением, в режиме синхронизации на мультивибратор действует извне синхронизирующее напряжение, частота которого определяет частоту импульсов, ну а в ждущем режиме мультивибратор работает как генератор с внешним возбуждением.

Мультивибратор в автоколебательном режиме

На рисунке 1 показана наиболее распространенная схема мультивибратора на транзисторах с емкостными коллекторно-базовыми связями, на рисунке 2 — графики, поясняющие принцип его работы. Мультивибратор состоит из двух усилительных каскадов на резиках. Выход каждого каскада соединен со входом другого каскада через кондеры С1 и С2.

Читать еще:  Как отрегулировать пластиковое окно с поворотным механизмом

Рис. 1 — Мультивибратор на транзисторах с емкостными коллекторно-базовыми связями

Мультивибратор, у которого транзисторы идентичны, а параметры симметричных элементов одинаковы, называется симметричным. Обе части периода его колебаний равны и скважность равна 2. Если кто забыл, что такое скважность, напоминаю: скважность — это отношение периода повторения к длительности импульса Q=Tи/tи. Величина, обратная скважности называется коэффициентом заполнения. Так вот, если имеются различия в параметрах, то мультивибратор будет несимметричным.

Мультивибратор в автоколебательном режиме имеет два состояния квазиравновесия, когда один из транзисторов находится в режиме насыщения, другой — в режиме отсечки и наоборот. Эти состояния не устойчивые. Переход схемы из одного состояния в другое происходит лавинообразно из-за глубокой ПОС.

Рис. 2 — Графики, поясняющие работу симметричного мультивибратора

Допустим, при включении питания транзистор VT1 открыт и насыщен током, проходящим через резик R3. Напряжение на его коллекторе минимально. Кондер С1 разряжается. Транзистор VT2 закрыт и кондер С2 заряжается. Напряжение на кондере С1 стремится к нулю, а потенциал на базе транзистора VT2 постепенно становится положительным и VT2 начинает открываться. Напряжение на его коллекторе уменьшается и кондер С2 начинает разряжаться, транзистор VT1 закрывается. Далее процесс повторяется до бесконечности.

Параметры схемы должны быть следующими: R1=R4, R2=R3, C1=C2. Длительность импульсов определяется по формуле:

Период импульсов определяется:

Ну а чтобы определить частоту, надо единицу разделить на вот эту вот хренотень (см. чуть выше).

Выходные импульсы снимаются с коллектора одного из транзисторов, причем с какого именно — не важно. Другими словами, в схеме два выхода.

Улучшение формы выходных импульсов мультивибратора, снимаемых с коллектора транзистора, может быть достигнуто включением разделительных (отключающих) диодов в цепи коллекторов, как показано на рисунке 3. Через эти диоды параллельно коллекторным нагрузкам подключены дополнительные резики Rд1 и Rд2.

Рис. 3 — Мультивибратор с улучшенной формой выходных импульсов

В этой схеме после закрывания одного из транзисторов и понижения потенциала коллектора подключенный к его коллектору диод также закрывается, отключая кондер от коллекторной цепи. Заряд кондера происходит через дополнительный резик Rд, а не через резик в коллекторной цепи, и потенциал коллектора запирающегося транзистора почти скачком становится равным Eк. Максимальная длительность фронтов импульсов в коллекторных цепях определяется в основном частотными свойствами транзисторов.

Такая схема позволяет получить импульсы почти прямоугольной формы, но её недостатки заключаются в более низкой максимальной скважности и невозможностью плавной регулировки периода колебаний.

На рисунке 4 приведена схема быстродействующего мультивибратора, обеспечивающая высокую частоту автоколебаний.

Рис. 4 — Быстродействующий мультивибратор

В этой схеме резики R2, R4 подключены параллельно кондерам С1 и С2, а резики R1, R3 ,R4, R6 образуют делители напряжения, стабилизирующие потенциал базы открытого транзистора (при токе делителя, большем тока базы). При переключении мультивибратора ток базы насыщенного транзистора изменяется более резко, чем в ранее рассмотренных схемах, что сокращает время рассасывания зарядов в базе и ускоряет выход транзистора из насыщения.

Ждущий мультивибратор

Мультивибратор, работающий в автоколебательном режиме и не имеющий состояния устойчивого равновесия, можно превратить в мультивибратор, имеющий одно устойчивое положение и одно неустойчивое положение. Такие схемы называются ждущими мультивибраторами или одновибраторами, одноимпульсными мультивибраторами, релаксационными реле или кипп-реле. Перевод схемы из устойчивого состояния в неустойчивое происходит путем воздействия внешнего запускающего импульса. В неустойчивом положении схема находится в течение некоторого времени в зависимости от её параметров, а затем автоматически, скачком возвращается в первоначальное устойчивое состояние.

Для получения ждущего режима в мультивибраторе, схема которого была показана на рис. 1, надо выкинуть пару деталюшек и заменить их, как показано на рис. 5.

Рис. 5 — Ждущий мультивибратор

В исходном устойчивом состоянии транзистор VT1 закрыт. Когда на вход схемы приходит положительный запускающий импульс достаточной амплитуды, через транзистор начинает проходить коллекторный ток. Изменение напряжения на коллекторе транзистора VT1 передается через кондер С2 на базу транзистора VT2. Благодаря ПОС (через резик R4) нарастает лавинообразный процесс, приводящий к закрыванию транзистора VT2 и открыванию транзистора VT1. В этом состоянии неустойчивого равновесия схема находится до тех пор, пока кондер С2 не разрядится через резик R2 и проводящий транзистор VT1. После разряда кондера транзистор VT2 открывается, а VT1 закрывается, и схема возвращается в исходное состояние.

Схема генератора импульсов

Существует довольно много схем генераторов импульсов. Многие радиолюбители их переделывают с целью улучшения характеристик. Для тех, кому нужна простая, но функциональная схема генератора прямоугольных импульсов с регулировкой частоты и скважности в довольно широких пределах схема представлена ниже. Кроме того эту схему можно использовать как ШИМ для регулировки мощности нагрузки или регулятор оборотов двигателя, увеличив мощность выходного каскада. У меня такая схема применяется для регулировки оборотов лодочного электромотора, который потребляет 30 ампер.

Читать еще:  Регулировка через bios частоты и напряжения питания ядра процессора

Схема генератора основана на одной из самых распространенных микросхем — таймер NE555. Ее отечественный и импортный аналоги КР1006ВИ1 и LM555.

Схема генератора импульсов

Рассмотрим работу схемы более подробно. Сама схема генератора организована в соответствии со стандартом по даташиту. Резистором R2 регулируется частота импульсов, а с помощью R3 ширина. При этом диапазон регулировки периода длительности лежит в пределах 10-100 микросекунд, а период следования в пределах 50-100 микросекунд. Кроме того эти параметры можно изменять с помощью задающего конденсатора C1.

Электролитический конденсатор C3 сглаживает пульсации от источника питания, если же для питания используется аккумулятор или батарейки, то необходимость в нем отпадает и его можно не устанавливать.

После сборки ни требуется, ни какой наладки, и в случае безошибочной сборки схемы она начинает работать сразу, как только будет подано питание.

Питание генератора то же можно установить в довольно широких пределах без стабилизатора. Оно составляет от 4,5 вольт до 16. Но есть все-таки один недостаток, при изменении напряжения питания немного изменяется частота, если это критично для применяемой схемы, то следует поставить стабилизатор.

Для осуществления более точной и плавной регулировки выходных параметров резисторы R2 и R3 следует использовать многооборотные с линейной характеристикой.

Максимальный выходной ток таймера составляет 250 миллиампер. Если этого недостаточно, то для умощнения выхода целесообразно установить мощный полевой транзистор рассчитанный на необходимый ток. Они характеризуются малым проходным сопротивление в открытом состоянии, порядка нескольких млОм. Что позволяет при малых размерах коммутировать мощную нагрузку до сотен ампер. И кроме того требуется малое управляющее напряжение. В случае если нагрузка будет индуктивной, например коллекторный двигатель, на выходе нужно установить быстродействующий диод Шоттки в обратной полярности рассчитанный на выходной ток.

Вовочка подходит к бабушке и говорит:
— Бабушка, нас в школе учат говорить только правду, вот я и решил тебе сознаться. В прошлом году я съел банку варенья, а чтоб ты не заметила я в нее насрал.
Дед резко вскакивает со стула бабке дает по голове и орет:
— Я же тебе говорил что говно, а ты засахарилось, засахарилось.

Автоколебательный мультивибратор на логических элементах

Направление зарядного тока конденсатора. Разработка электрической схемы автоколебательного мультивибратора. Схема регулировки скважности. Расчёт основных параметров функционирования схемы мультивибратора. Выбор элементной базы и составление спецификации.

Подобные документы

Цифровые способы обработки электрических сигналов, передачи и приема их в цифровой форме. Принцип работы автоколебательного мультивибратора. Разработка схемы электрической принципиальной устройства управления. Моделирование электронного коммутатора.

курсовая работа, добавлен 10.12.2012

Экспериментальное исследование схемы автоколебательных мультивибраторов на транзисторах и интегральных микросхемах. Измерение тока коллектора с помощью осциллографа. Факторы, ограничивающие величину максимальной частоты генерации мультивибраторов.

лабораторная работа, добавлен 18.06.2015

Расчет элементов схемы несимметричного мультивибратора на полевых транзисторах с управляющим p-n переходом и каналом p-типа. Исследование типичных форм прямоугольных колебаний. Построение временных диаграмм мультивибратора на биполярных транзисторах.

контрольная работа, добавлен 21.09.2016

Выбор и обоснование структурной схемы лабораторного макета. Состав и выбор его элементной базы. Расчет электрических параметров схемы. Особенности использования мультиплексоров 4-1 на логических элементах и 8-1 на интегральной схеме. Конструкция макета.

курсовая работа, добавлен 16.05.2012

Режимы работы и анализ исходной релейно-контактной установки. Обоснование выбора серии микросхем и разработка принципиальной электрической схемы на бесконтактных логических элементах. Выбор программируемого контроллера и разработка программы на языке РКС.

курсовая работа, добавлен 25.04.2012

Принцип действия схемы генератора на основе операционного усилителя. Проверка работы мультивибратора в программе Micro-Cap, определение относительной погрешности. Описание интегральной схемы К572ПА2. Схема дискретно-аналогового преобразования фильтра.

курсовая работа, добавлен 06.04.2013

Преобразование энергии источника постоянного тока в энергию электрических колебаний при помощи релаксационных генераторов. Устройство автоколебательного мультивибратора на дискретных компонентах. Выбор структурной схемы генератора прямоугольных импульсов.

курсовая работа, добавлен 14.06.2011

Мультивибратор как релаксационный генератор электрических колебаний прямоугольного типа с крутыми фронтами. Исследование генератора импульсов на двух транзисторах. Нахождение емкости конденсатора. Форма сигнала мультивибратора. Расчет частоты генератора.

лабораторная работа, добавлен 06.03.2015

Расчет параметров схем, расчетные формулы блокинг-генератора, работающего в автоколебательном режиме. Сопротивление нагрузки, амплитуда выходных импульсов, скважность. Выбор и обоснование элементной базы (для принципиальной электрической схемы).

реферат, добавлен 20.12.2012

Выбор и обоснование схем устройства термостабилизатора паяльника на микроконтроллере. Моделирование принципиальной схемы с помощью Multisim 12. Алгоритм ремонта, диагностики и технического обслуживания. Расчет технических параметров элементной базы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector