Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радио-как хобби

Простой регулятор оборотов вентилятора своими руками.

Автоматический термоуправляемый регулятор вращения вентилятора можно собрать по самым различным схемам.

И далеко ведь не всегда нужен подобный автоматический термоуправляемый регулятор вращения вентилятора , который работает под управлением микроконтроллеров. Зачастую задачи обдува и охлаждения каких-либо активных элементов, которые при работе выделяют много тепла, можно решить, применив простые и неприхотливые регуляторы.

Ранее уже делал подобные регуляторы вращения вентиляторов. Их описания приведены в соответствующей статье. Но в этих регуляторах применены в качестве датчиков температуры терморезисторы. Безусловно, в наши дни терморезисторы не проблема-они продаются в любом интернет магазине радиодеталей.

Но есть вариант обойтись и без терморезисторов. Именно две проверенные в работе конструкции таких регуляторов описаны в данной статье. Схемы этих автоматических регуляторов вращения вентиляторов найдены в сети и принадлежат их авторам.

Автоматический термоуправляемый регулятор вращения вентилятора. Вариант 1.

Схема этого термоуправляемого регулятора вращения вентилятора приведена ниже.

Этот термоуправляемый регулятор выполняет следующие функции-при увеличении температуры датчика на транзисторе VT1 обороты вентилятора начинают плавно увеличиваться до максимальных. После снижения температуры нагрева датчика обороты вентилятора уменьшаются.

Конструкция очень простая. Автоматический регулятор собран всего на двух транзисторах.

Датчиком температуры служит транзистор VT1 типа КТ940А. Данный транзистор имеет корпус КТ-27 со штатным отверствием для крепления к радиатору. Это удобно-позволяет закрепить ( через изолирующую прокладку) такой датчик температуры прямо на радиаторе силового элемента, который необходимо охлаждать обдувом.

Подстроечный резистор R2 служит для установки минимальной скорости вращения вентилятора. При помощи этого подстроечного резистора можно также выбрать такой режим, когда вентилятор вообще не вращается, но, при повышении температуры датчика (транзистор VT1) вентилятор начинает работать.

Транзистор VT2 является регулирующим. К такому автоматическому регулятору можно подключить довольно мощные вентиляторы. Единственное-может потребуется оснастить транзистор VT2 небольшим радиатором.

Данный регулятор никакой наладки не требует, и работает сразу после подачи питания.

Собран на небольшой печатной плате и выглядит в сборе так:

Автоматический термоуправляемый вентилятор. Вариант 2.

Данный автоматический термоуправляемый регулятор вращения вентилятора по схеме немного сложнее-собран на четырех транзисторах.

Его схема выглядит так:

В этой схеме датчиком температуры служит транзистор VT2. Подстроечным резистором R4 выставляются минимально необходимы обороты вентилятора ( вплоть до отсутствия вращения)

Составной транзистор VT3VT4 управляет работой вентилятора. Логика работы автоматического регулятора вращения вентилятора варианта №2 аналогична и регулятору варианта №1.

Хотя есть одна необычная особенность…

В ходе экспериментов выяснилось, что если в качестве датчика температуры использовать транзистор VT1 вместо VT2, и установив подстроечным резистором R4 максимальные обороты вентилятора в холодном состоянии датчика температуры VT1 , то при нагреве последнего происходит плавное снижение оборотов вентилятора, вплоть до полного его останова. То есть логика управления получается инверсной. Не знаю, где это может быть полезно, возможно в схемах тепловентиляторов.

Автоматический термоуправляемый регулятор вращения вентилятора по варианту 2 также при исправных деталях работает сразу и не требует никакой наладки.

В сборе выглядит так:

регулятор. вид 2

Регуляторы по обоим схемам мною собраны и протестированы в работе.

Надежность их работы определяется только надежностью примененных радиоэлектронных компонентов, и, на мой взгляд, вполне достаточная для радиолюбительских применений.

Еще одно замечание…

Датчик температуры в регуляторе по схеме варианта №1 собран на транзисторе КТ940А. Он имеет более массивный корпус, поэтому прогревается чуть дольше , и остывает медленнее. Отсюда- регулятор по схеме вариант №1 имеет чуть большую тепловую инерцию.

Регулятор по схеме №2, где в качестве датчика температуры использован транзистор 2N3906 (КТ3107) гораздо шустрее реагирует на нагрев и охлаждение.

Короткое видео с демонстрацией работы регуляторов, описанных в данной статье:

Способы уменьшения оборотов на вентиляторе

При недостаточной естественной циркуляции воздуха в помещениях – жилых, технических, хозяйственных – устанавливают вентиляторы. Приборы обеспечивают воздухообмен на уровне, необходимом для работы оборудования или создания комфортных условий пребывания. Работают аппараты в разном режиме, так как в течение суток требования к воздухообмену изменяются. Увеличить или уменьшить скорость вращения вентилятора можно с помощью контроллера скорости.

Изменение скорости вращения

Вентилятор в общем виде – ротор с закрепленными определенным образом лопатками. При вращении лопатки сталкиваются с воздухом и отбрасывают его в некотором направлении. По конструкции различают:

  • Осевой – направление нагнетаемого и всасываемого вздоха совпадают. Вентилятор предназначен для охлаждения чего-либо: кулеры в компьютерах, бытовые приборы, шахтные вентиляторы, аппараты для дымоудаления.
  • Радиальный – центробежный. Воздух всасывается с одной стороны вентилятора, нагнетается по другую сторону – под прямым углом. Радиальные вентиляторы используют в промышленности.
  • Тангенциальный – имеет сложное строение по типу «беличьего колеса». Воздух всасывается вдоль периферии и нагнетается под прямым углом. Такая конструкция стоит в кондиционерах, воздушных завесах, холодильниках.
  • Безлопастный – по сути, нагнетатель воздуха. В быту почти не встречается.

Любой вентилятор в силу специфики конструкции работает на полную мощность. Это приводит к быстрому износу прибора и поломкам. Максимально мощный поток воздуха требуется не все время. Чтобы уменьшить обороты вентилятора, нужно подключить специальное устройство.

Элемент для уменьшения оборотов вентилятора

Регулирует скорость вращения контроллер скорости. Уменьшаться она может по 2 механизмам:

  • изменение частоты тока – чем она ниже, тем меньшее количество оборотов делает кулер;
  • изменение напряжения, поступающего на обмотку.
Читать еще:  Освещение с регулировкой яркости светодиод

В абсолютном большинстве случаев используются приборы 2 типа. Приспособления, изменяющие частоту, обычно стоят намного дороже вентилятора.

Контроллеры могут быть механическими и автоматическими. Первые регулируются вручную с помощью колесика. Уменьшать можно как плавно, так и ступенчато – это зависит от типа прибора, чаще всего это симисторные модели. В сложных системах устанавливают контроллеры с автоматическим управлением. Здесь сигналом к снижению числа оборотов служат показатели датчиков: температурных, влажностных, газовых, фотодатчиков. Их главная задача – снизить потребление энергии, когда система функционирует в оптимальном режиме и не нуждается в усиленном охлаждении.

Уменьшение скорости вращения вентилятора вытяжки

В системах принудительного кондиционирования обычно ставят канальные вентиляторы. На максимальной мощности приборы работают только в тяжелых условиях – промышленном цеху. В офисах компаний, коммерческих помещениях и даже в лабораториях мощность вытяжки изменяют в зависимости от времени суток и характера деятельности.

Чтобы уменьшить скорость канального вентилятора, нужно установить ступенчатый контроллер. Регулятор снижает напряжение, подаваемое на обмотку. При этом падает и скорость вращения лопастей. Трансформаторный ступенчатый контроллер оптимален, когда скорость вращения кулера удобнее регулировать вручную, например, чтобы снизить шум в какое-то время.

Если скорость кулера находится в зависимости от температуры или уровня влажности, ставят электронный модуль с автоматическим управлением.

Автоматические контроллеры нередко оснащаются аварийными индикаторами, лампами сигнализации и даже возможностью гальванической развязки с сетью.

Назначение контроллера

Регуляторы вращения кулера выполняют несколько задач:

  • Экономия электроэнергии – на максимальной мощности вентилятор потребляет максимальное же количество электроэнергии. Это невыгодно. Возможность снизить число оборотов, когда в этом нет нужды, позволяет уменьшить счета за электричество.
  • Увеличение срока работы оборудования – вентилятор включает движущиеся части. При интенсивной работе они быстро изнашиваются и выходят из строя. Уменьшив число оборотов, можно увеличить срок эксплуатации вытяжки, кондиционера, холодильника.
  • Снижение уровня шума – вентилятор на максимальной мощности создает относительно небольшой шум. Но если приборов несколько, уровень шума превышает терпимые 50 дБ. Если понизить число оборотов, шум тоже снижается.
  • Поддержка постоянного режима – без контроллера вентилятор может находиться только в 2 состояниях: работа на полной мощности и отключение. При работе в вентиляционной системе прибор периодически включается и выключается. Такой режим приводит к перегреву аппарата и перерасходу электроэнергии. Контроллер обеспечивает инверсионный принцип работы: снижение и увеличение числа оборотов без скачков напряжения.

Контроллер можно установить на системы вытяжки на кухне или вентиляции офиса, а также на бытовые приборы и оборудование: холодильники, компьютеры.

Основные разновидности

Чтобы снизить или увеличить скорость вращения вентилятора, нужно подобрать устройство необходимой конструкции. Выделяют несколько видов контроллеров. Самая известная классификация – по принципу управления. Однако все они относятся к приборам, изменяющим величину напряжения на обмотку.

Тиристорные или симисторные

Предназначены для работы с однофазными аппаратами, имеющими защиту от перегрева. Здесь реализуются принцип фазового управления. 2 тиристора, соединенные встречно-параллельно, образуют симистор. При прохождении напряжения через ноль тиристор «отрезает» часть в начале или в конце волны напряжения в зависимости от схемы управления. В итоге среднеквадратичное напряжение изменяется.

Тиристорные контроллеры эффективны, компактны, создают мало шума. Однако подключить их можно только к электродвигателям, спроектированным с учетом такой возможности.

При частоте в сети в 50 Гц симисторные контроллеры действуют хуже: слышны рывки и шум при работе.

Частотные

Изменяют частоту напряжения, подаваемого на вентилятор. С их помощью получают напряжение от 0 до 480 В. Частотные контроллеры – главный способ регулировки в инверторных аппаратах: кондиционерах, преобразователях. Однако работать регулятор может только с трехфазными электродвигателями, что ограничивает его применение.

Трансформаторные

Модели рассчитаны на обеспечение наиболее мощных вентиляторов. Выпускают одно- и трехфазные приборы. Чаще всего это ступенчатые регуляторы. Они повышают и понижают напряжение через определенный интервал, который указывается в маркировке. Однако есть варианты, обеспечивающие плавную регулировку.

Трансформаторные регуляторы громоздки, стоят недорого. Прибор можно монтировать на стенах, внутри стен, прямо внутри установки. Контроллер может обслуживать несколько вентиляторов и отличается высокой надежностью.

Читать еще:  Регулировка напряжения на катушке

Правила подключения устройства

Регулятор для уменьшения оборотов вентилятора может смонтировать и настроить специалист. В простых случаях с такой задачей справляются самостоятельно.

Способы установки контроллеров зависят от типа устройства: настенный, внутристенный вариант, модель для установки внутри корпуса, реобас для регулировки вращения кулеров в системном блоке и прочее. Схема подключения регулятора имеется в инструкции к прибору. Изучив руководство, можно разобраться, как подсоединить прибор и обслуживать его.

  1. Настенные и внутристенные варианты закрепляют на стену шурупами или дюбелями. Крепеж обычно входит в комплект.
  2. Регулятор подключают к питающему кабелю по схеме, приведенной производителем. Задача сводится к обрезке проводов ноля, фазы и земли и последовательного присоединения жил к входным и выходным клеммам.
  3. Прежде чем начать монтаж, нужно убедиться, что сечение соединительного питающего кабеля соответствует максимальному току подсоединяемого контроллера.
  4. Если вентилятор оснащен собственным выключателем. Последний необходимо демонтировать и заменить на контроллер.

Чтобы снизить обороты компьютерного кулера, используют устройство дополнительного сопротивления или его усовершенствованный вариант – реобас. Предварительная работа здесь сложнее. Необходимо правильно оценить, какова допустимая температура для каждого элемента оборудования: материнской платы, процессора графической карты. В противном случае снижение скорости кулера приводит к перегреву и поломке процессора или платы.

Принцип подключения реобаса: провода от вентилятора обрезают и подсоединяют к регулятору по схеме, указанной производителем. Реобас удобнее тем, что контролирует сразу несколько вентиляторов, в то время как дополнительное сопротивление снижает обороты только у 1 устройства.

Сборка прибора своими руками

Контроллер представляет собой сопротивление, подсоединяемое по специфической схеме. Собрать простейший вариант для управления бытовым вентилятором можно своими руками. Понадобится для этого 3 детали: переменный и постоянный резисторы и транзистор.

  1. К центральному контакту переменного резистора припаивают базу транзистора. К крайнему выводу резистора подсоединяют коллектор.
  2. К другому краю резистора методом пайки прикрепляют постоянный резистор сопротивлением в 1 кОм. Второй вывод постоянного резистора припаивают к эмиттеру транзистора.
  3. К коллектору транзистора крепят кабель входного напряжения, а «плюсовой» выход фиксируют к эмиттеру транзистора.
  4. Чтобы проверить работу элемента, провод от эмиттера присоединяют к «плюсовому» проводу вентилятора. Провод выходного напряжения от самодельного ребоаса подсоединяют к блоку питания. «Минусовый» провод вентилятора прикрепляют напрямую, не включая в схему регулятор.
  5. Включают блок питания в сеть. Понижают и увеличивают скорость вращения кулера, поворачивая колесико переменного резистора.

Самоделка совершенно безопасна для вентилятора, поскольку «минусовый» провод подсоединен напрямую. Даже если контроллер замкнет, кулер не пострадает.

Регулировка оборотов кулера своими руками, схемы и ход работ

Есть сразу несколько причин, чтобы задуматься, как сделать регуляторы скорости кулера своими руками. Чаще всего – это шум этого самого вентилятора и таким способом можно от него если не избавиться совсем, то сделать значительно тише это точно. Дальше расскажу, что и как я делал, чтобы добиться поставленной цели.

Сборка регуляторов вращения кулера

Сегодня мы рассмотрим три интересные схемы для регулятора скорости вентилятора – одна обычная, вторая с термодатчиком и третья для уменьшения шума.

Не будем томить и сразу приступим к делу.

Обычная схема для регулятора оборотов кулера

Эта схема обеспечивает регулировку скорости вентилятора без контроля оборотов.

Схема размещается прямо внутри блока питания и имеет дополнительные посадочные места для подключения внешних датчиков, также есть возможность добавить стабилитрон, что будет ограничивать минимальное напряжение вентилятора.

Вот все комплектующие, что вам понадобятся для сборки этой схемы:

  • Биполярные транзисторы;
  • Стабилитрон;
  • Диод;
  • Электролитический конденсатор;
  • 8 резисторов;
  • Терморезистор;
  • Сам вентилятор;

А вот и сама схема:

Схема регулятора оборотов кулера с термодатчиков

Вентилятор в блоках питания вращается с постоянной скоростью, она не зависит от температуры высоковольтных резисторов, что вентилятор должен охлаждать.

Как правило, блок питания всегда подаёт на вентилятор мощность, необходимую для поддержания этой скорости.

Блоки питания, что ставятся в компьютеры, выбираются с запасом даже при максимуме энергопотребления. Соответственно, блок питания работает не на всю и высоковольтные резисторы не сильно нагреваются.

Поэтому кулер впустую гоняет воздух и поднимает пыль внутри компьютера.

Решить эту проблему поможет автоматический регулятор частоты оборотов вентилятора с термодатчиком, чья схема располагается ниже.

Список радиодеталей, что понадобится вам при сборке:

  • Два биполярных транзистора;
  • Четыре диода;
  • Два резистора;
  • Ну и сам вентилятор;

Датчиком в этом регуляторе служат германиевые диоды VD1-VD4.

Этот выбор обусловлен рядом плюсов германиевых диодов перед терморезисторами. Во-первых, зависимость обратного тока у них более выражена, чем у тех же терморезисторов, а во-вторых, стеклянный корпус диодов позволяет обойтись без диэлектрических прокладок.

Резистор R1 нужен для исключения возможности поломки транзисторов VT1 и VT2, в случае теплового пробоя диодов. Сопротивление резистора выбирается из максимально допустимого значения тока базы VT1.

Читать еще:  Регулировка угла наклона пластикового окна

Резистор R2 в свою очередь определяет порог, когда вентилятор должен сработать.

Устройство вставляется напрямую в блок питания.

Выводы диодов спаиваются вместе, после чего приклеиваются к теплоотводу высоковольтных транзисторов с обратной стороны. К выводам транзистора VT2 припаиваются резисторы R1 и R2, а также транзистор VT1.

Сам же транзистор VT2 устанавливается эмиттером в отверстие «cooler», что находится на плате блока питания.

При настройке регулятора, что происходит в основном в подстройке резистора R2 и выбору подходящего количества диодов.

Настраивая резистор R2, вам необходимо подобрать сопротивление введенной части, чтобы при номинальной нагрузке кулер крутился с небольшой скоростью.

Также вам нужно добиться, чтобы при подаче питания вентилятор вращался с небольшой частотой (если слишком быстро вращается – уменьшите количество диодов, если не вращается – увеличьте).

Рекомендую следующее видео, в котором автор самостоятельно изготавливает регулятор скорости вращения компьютерного вентилятора:

Что в итоге.

Сегодня мы рассмотрели то, как своими руками собрать обычный регулятор частоты оборотов компьютерного вентилятора и регулятор скорости вращения вентилятора с термодатчиком.

Для понимания того, как мы их собирали, воспользуйтесь схемами, что находятся выше.

Напишите в комментариях то, как думаете – стоит ли изготавливать и устанавливать подобные регуляторы или вентилятор и без них нормально работает?

Автоматический регулятор оборотов кулера

Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема

Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Изготовление регулятора

Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.

После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.

Настройка

Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector