Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типы источников питания

Типы источников питания

В электротехнике источник питания — это устройство, которое преобразует электрическую энергию в выходное электрическое напряжение, ток и частоту, необходимые для подключенного электрического прибора. Он преобразует переменный ток в постоянный ток и питает различные электронные устройства (компьютер, телевизор, принтер, роутер и т. д.). Есть два различных вида источника питания: источник напряжения (обеспечивает постоянное напряжение) и источник тока (обеспечивает постоянный ток).

Источник питания

Источники питания для электронных устройств в основном можно разделить на линейные и импульсные:

  • линейные источники питания, в которых согласующим элементом является трансформатор (сущетсуют и бестрансформаторные линейные истчники питания);
  • импульсные источники питания с использованием различных типов электронных систем (преобразователей напряжения);

Линейные имеют относительно простую конструкцию, которая может усложняться с увеличением тока, который они должны подавать, однако их регулировка напряжения у них не очень эффективна.

Источник питания — неотъемлемая часть многих устройств. Вот некоторые из основных типов:

  • Импульсный блок питания. В настоящее время большинство блоков питания производится в виде импульсных блоков питания. Их преимущество — в основном меньший вес. Когда полупроводниковые компоненты управления и питания еще не были доступны, чтобы позволить недорогую конструкцию импульсных блоков питания, использовались более тяжелые и долговечные блоки питания с трансформатором.
  • Компьютерный блок питания. Компьютеры содержат импульсный источник питания, который преобразует низкое напряжение переменного тока из распределительной сети (230 В, 50 Гц) в низкое напряжение, используемое в электрических цепях компьютера (напряжение постоянного тока 3,3 В, 5 В и 12 В).
  • Сетевой адаптер. Это небольшой импульсный блок питания, имеющий форму и размер стандартной электрической вилки (например, зарядного устройства для сотового телефона), используемый в сети 230 В, обеспечивающей небольшое напряжение, необходимое для конкретного электрического или электронного устройства. Сетевые адаптеры, как правило, используются с устройствами и приборами, которые не имеют свой собственный внутренний источник питания.
  • Сварочный источник питания. Сварочные источники обеспечивают высокий ток (обычно сотни ампер), который позволяет расплавлять металл локально и, таким образом, обеспечивать его соединение. Раньше применялись так называемые сварочные трансформаторы (со специальными электромагнитными трансформаторами, рассчитанными на большие сварочные токи), более современными являются сварочные инверторы с электронным управлением.

Блок питания на 24 вольта

Внутренне сопротивление источника питания

Идеальный источник питания, как источник напряжения, всегда обеспечивает одно и то же напряжение независимо от подключенной нагрузки (т. е. напряжение источника питания постоянно при разном потребляемом токе).

Однако идеального источника не существует, потому что внутреннее сопротивление реального источника ограничивает максимальный ток, который может протекать через электрическую цепь.

Настоящий источник питания может использовать стабилизатор напряжения для обеспечения стабильного выходного напряжения, которое обеспечивается за счет падения напряжения (разницы между входным и выходным напряжением стабилизатора). Пример — Импульсный стабилизатор напряжения

Итак, по качеству выходного напряжения источники питания различают:

  • стабилизированные источники, напряжение которых поддерживается на постоянном уровне независимо от колебаний тока,
  • нестабилизированные источники, в которых выходное напряжение может изменяться в зависимости от колебаний тока .

Трансформаторные линейные источники питания

Классические линейные источники состоят из следующих элементов: трансформатор, выпрямитель, фильтр и устройство регулирования напряжения.

Принципиальная схема линейного источника питания

Принципиальная схема линейного источника питания

Сначала трансформатор преобразует сетевое напряжение в пониженное и обеспечивает гальваническую развязку. Схема, которая преобразует переменный ток в импульсный постоянный ток, называется выпрямителем (для выпрямления используются мостовые схемы на диодах), далее фильтр с конденсаторами и индуктивностями уменьшает пульсации. Подробно про фильтры — Фильтры источников питания.

Регулирование или стабилизация напряжения до заданного значения достигается с помощью так называемого регулятора напряжения, в конструкции которого используются транзисторы.

Транзистор в схеме действует как регулируемое сопротивление. На выходе из этого каскада для достижения большей стабильности в пульсации есть второй каскад фильтрации (хотя и не обязательно, все зависит от проектных требований), это может быть обычный конденсатор.

Среди источников питания есть такие, в которых мощность, подаваемая на нагрузку, регулируется тиристорами, чтобы подавать требуемое напряжение и мощность на нагрузку.

Немецкий лабораторный источник питания

Немецкий лабораторный источник питания

Современные линейные источники питания

Стабилизация напряжения в базовом типе линейных источников достигается путем включения специального элемента параллельно цепи, питаемой от нестабилизированного источника более высокого напряжения, через подходящий резистор, вольт-амперная характеристика которого показывает резкое увеличение тока при требуемом напряжении. Такой элементом является стабилитрон (диод Зинера), который работает в широком диапазоне пороговых напряжений.

Недостатками источника питания с диодом Зенера являются относительно низкая стабильность выходного напряжения, относительно небольшой диапазон тока и особенно низкий КПД, поскольку электрическая энергия преобразуется в тепло в последовательном резисторе и в самом стабилитроне.

Линейный источник питания для Ардуино

Современные линейные источники (обычно в виде интегральной схемы) используют элемент с переменным импедансом (транзистор в линейном режиме), который регулируется обратной связью, основанной на разнице между выходным напряжением и постоянным напряжением от внутреннего опорного напряжения (на основе диодной схемы, но с небольшим постоянным потреблением).

Читать еще:  Подвес для кухонных шкафов регулировка

Типичными представителями линейных источников являются интегральные схемы типа 78xx (например, 7805 — источник напряжения 5 В) и их производные.

Недостатком таких линейных источников питания является их низкая эффективность (и поскольку рассеиваемая мощность в интегральной схеме изменяется в зависимости от нагрева, а также необходимость охлаждения), особенно когда существует большая разница между входным и выходным напряжением и большими токами. Недостатком иногда является также то, что выходное напряжение всегда ниже входного.

Преимущество заключается в их низкой цене, небольшом размере, простоте использования и отсутствии помех извне и в цепи питания.

Встроенный источник питания в лабораторном стенде по изучению электротехники

Встроенный источник питания в лабораторном стенде по изучению электротехники

Импульсные источники питания

В импульсных источниках питания используется полевой транзистор, который периодически замыкаются с относительно высокой частотой (десятки кГц и более) и увеличивают входное напряжение схемы, состоящей из комбинации катушки, конденсатора и диода. С помощью подходящей комбинации этих элементов можно добиться снижения и увеличения напряжения.

Другой тип импульсного источника питания — это источник питания с трансформатором и последующим диодным выпрямителем, в котором используются выгодные свойства (меньшие размеры трансформатора при больших токах, меньшие магнитные потери) современных магнитных материалов (ферритов) на высоких частотах. Изменяя частоту можно добиться изменения выходного напряжения.

Таким образом, такой источник питания включает в себя схему (обычно в виде интегральной схемы), которая обеспечивает изменение частоты на основе обратной связи от выходного напряжения, чтобы обеспечить стабильное выходное напряжение при различных нагрузках.

Поскольку импульсные источники питания работают с прямоугольными напряжениями токов и токов, они, как правило, излучают электромагнитные волны в широком диапазоне частот. Поэтому при их создании и использовании необходимо соблюдать принципы электромагнитной совместимости (ЭМС).

Лабораторное оборудование

В мастерской или лаборатории прецизионный источник питания используется для проведения измерений, испытаний, поиска и устранения неисправностей. Эти лабораторные источники питания преобразуют, выпрямляют и регулируют напряжения, а также выходные токи, так что измерения можно проводить без повреждения тестируемых элементов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Схема простой регулятор напряжения

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

Делаем простой регулятор напряжения

КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2

Эл-схема ПРОСТОГО РЕГУЛЯТОРА НАПРЯЖЕНИЯ

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

Читать еще:  Перенести синхронизацию на другой комп

Изготовление ПРОСТЫХ РЕГУЛЯТОРОВ НАПРЯЖЕНИЯ

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.

Форум по обсуждению материала ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Схема регулируемого таймера цикличного включения-отключения любой нагрузки через реле.

Схема и сборка самодельного усилителя НЧ на TDA7379, TDA7375, TDA7377 или STA540.

Схема оригинального регулятора яркости светодиодов, на базе полевого транзистора и оптрона.

Усилитель мощности звука на транзисторах, из радиоконструктора DJ200. Проверка работы схемы.

Двухполярный регулируемый блок питания на LM317+LM337

Двухполярный блок питания построен на регулируемых линейных стабилизаторах LM317 и LM337, которые способны выдавать ток до 1.5А, регулировать выходное напряжение в диапазоне ±1.25?37В и обладают защитами от КЗ, перегрузки, а также от превышения температуры. Таким образом, регулируемый блок питания на LM317+LM337 может быть применен для запитывания различной радиоэлектронной аппаратуры стабилизированным двухполярным напряжением, с возможностью установки необходимого значения.

Я изготовил данный БП для удобства проверки маломощных УМЗЧ.

Основные технические характеристики

Входное напряжение (AC), В ….. не более 25-0-25

Максимальный выходной ток, А ….. 2.2

Номинальный выходной ток, А ….. 1.5

Выходное напряжение (DC), В ….. регулируемое от ±1.25 до ±30

Примечание. Номинальный и максимальный токи указаны при разнице до 15В между входным и выходным напряжением стабилизатора. Если эта разница будет больше, то максимальный и номинальный токи будут снижаться в соответствии с графиком, приведенным ниже.

Зависимость выходного тока от разницы напряжений LM317

Также важно знать, что согласно технических описаний на LM317 и LM337, чтобы получить необходимый ток, рассеиваемая мощность на стабилизаторе не должна превышать 20Вт, иначе будет срабатывать защита по перегрузке и будет происходить ограничение выходной мощности.

LM317+LM337 стабилизированный БП

Расположение выводов LM317 и LM337

Расположение выводов микросхем LM317 и LM337

Схема двухполярного регулируемого блока питания на LM317+LM337

Схема двухполярного регулируемого блока питания на LM317+LM337

Напряжение переменного тока с вторичной обмотки трансформатора поступает на помехоподавляющий конденсатор C1, а после него на диодный мост VDS1, где выпрямляется и поступает на линейные стабилизаторы LM317 и LM337. Регулируемый стабилизатор LM317 стабилизирует положительное плечо, а стабилизатор LM337 стабилизирует отрицательное плечо.

Регулировка напряжения осуществляется подстроечными резисторами R5 и R6. Рассчитать необходимое значение можно по формуле (для положительного плеча):

Vout=1.25(1+R5/R3)

Для отрицательного плеча:

Vout=1.25(1+R6/R4)

Электролитические конденсаторы C8 и C9 подавляют шум на выходе за счет сглаживания пульсаций на выводе обратной связи (на управляющем выводе).

Резисторы R1 и R2 ограничивают ток светодиодов HL1 и HL2, которые сигнализируют о присутствии питания на входе стабилизатора.

Емкости C6 и C7 сглаживают пульсации на входе, а C10-C13 на выходе блока питания.

Диоды VD3 и VD4 защищают микросхемы (LM317 и LM337) от разряда емкостей C8 и C9 в случае замыкания выхода на общий провод. Диоды VD1 и VD2 разряжают через себя конденсаторы C8 и C9 в случае замыкания на входе стабилизатора, за счет этого ток разряда протекает в общий провод, минуя микросхемы и тем самым защищая их от выхода из строя.

Емкости C2-C5 шунтируют элементы диодного моста для подавления мультипликативных помех при переключении (фон 100Гц). Это особенно актуально при использовании данного блока для питания радиоприемной аппаратуры.

Двухполярный блок питания на LM317/LM337

Трансформатор

Для увеличения КПД и поддержания на выходе блока питания тока 1.5А применяют трансформатор с несколькими вторичными обмотками и используют для них коммутацию, чтобы уменьшить разницу между напряжением входа и выхода блока питания. Например, отечественные трансформаторы серии ТН, для накальных ламп, имеют несколько вторичных обмоток по 6.3В.

Читать еще:  Регулировка холостого хода бензопилы хускварна 435

Трансформаторы ТН60-127-50 и ТН61-127-50 имеют по 4 вторичных обмотки (6.3В каждая), рассчитанные на ток 6А и 8А, что очень удобно для применения в качестве понижающих трансформаторов в лабораторных и регулируемых блоках питания.

Я применил трансформатор с двумя вторичными обмотками 25В+25В 1.8А.

Регулируемый двухполярный блок питания на LM317 и LM337

Также необходимо знать, что выпрямленное напряжение на конденсаторе будет равняться амплитудному значению напряжения переменного тока. То есть, если трансформатор имеет обмотку 25В, то выпрямленное напряжение на конденсаторе будет в ?2 раз больше, то есть 25В?1.41=35.25В.

Максимальное входное напряжение для LM317 составляет +40В, а для LM337 -40В. Я настоятельно рекомендую взять запас и поэтому рекомендую применять трансформаторы с максимальным напряжением 25В. Можно установить трансформатор и с меньшим значением, например, 9В+9В.

У трансформатора должно быть две вторичные обмотки, либо одна вторичная обмотка со средним выводом. Также можно соединить два одинаковых трансформатора.

Трансформатор для двухполярного блока питания

Охлаждение

На стабилизаторы необходимо установить теплоотводы. Площадь теплоотводов будет зависеть от тока потребления и от разности входного и выходного напряжения. Например, если на входе стабилизатора ±34В, а на выходе ±5В и ток нагрузки 0.4А, то на каждом из стабилизаторов (LM317/LM337) будет рассеиваться (34В-5В)?0.4А=11.6Вт, что очень даже немало. Но если на входе ±34В, а на выходе ±27В с током нагрузки 0.4А, то на стабилизаторах будет рассеиваться всего (34В-27В)?0.4А=2.8Вт.

Поэтому, площадь поверхности теплоотвода лучше подобрать экспериментально.

БП регулируемый двухполярный

Встроенная защита

Защиту от перегрева микросхем LM317 и LM337 я не проверял, но в техническом описании о ней упомянуто производителем.

Простой регулируемый двухканальный линейный блок питания с защитой по току на LM350. Схема

Иногда требуется простой линейный блок питания с регулируемым выходным напряжением и регулируемой функцией ограничения тока. В данной статье представлен простой блок питания с использованием регулируемого стабилизатора LM350, который обеспечивает регулируемое напряжение до 17 В и максимальный выходной ток до 2А.

LM350 имеет более высокую рассеиваемую мощность по сравнению с общедоступным регулируемым стабилизатором напряжения LM317 и, следовательно, имеет более высокий гарантированный выходной ток.

Характеристики LM350

Характеристики LM350

Распиновка LM350

Распиновка LM350

Типовое включение LM350

Типовое включение LM350

Скачать datasheet LM350 (85,5 KiB, скачано: 274)

Принципиальная схема блока питания приведена на рисунке ниже. Источник питания построен с использованием мостового выпрямителя (BR1), регулируемого стабилизатора напряжения LM350 (IC1), транзисторов BC327(T1) и BC337(T2) и нескольких дополнительных компонентов.

Простой регулируемый двухканальный линейный блок питания с защитой по току

Если использовать трансформатор с напряжением на вторичной обмотке 18-20 В с номинальным током 2A, с данной схемой мы можете получить выходное напряжение VOUT1 от 1,2 В до примерно 16,5 В, на разъеме CON3, и выходное напряжение VOUT2 от 0 В до 15 В, на разъеме CON2.

Вход регулируемого блока питания защищен предохранителем 2А F1. Конденсаторы С3 и С5 (2200 мкФ) являются основными фильтрующими конденсаторами.

Входное напряжение ограничено максимальным входным напряжением микросхемы LM350. Максимальная рассеиваемая мощность LM350 составляет около 25 Вт.

Согласно datasheet на LM350, входное напряжение LM350 может быть от 3 В до 35 В, а выходное напряжение может регулироваться в диапазоне от 1,2 В до 33 В

Выходное напряжение VOUT1 можно рассчитать по следующей формуле:

Выходное напряжение VOUT2 примерно на 1,5 В ниже, чем VOUT1, и, следовательно, может начинаться с 0В.

Транзисторы T1 и T2 совместно с потенциометром VR3 образуют блок ограничения по току. Минимальный выходной ток составляет около 0,35 А и зависит от резистора R2 и потенциометра VR3.

Бегунок потенциометра VR3 должен находиться в крайнем правом положении для получения минимального выходного тока, а в крайнем левом положении — для получения максимального выходного тока.

Максимальный выходной ток составляет около 2А. когда VR1 настроен на максимальный выходной ток, T1 и T2 будут открыты, а светодиод LED2 будет светиться. В противном случае транзисторы будут T1 и T2 будут заперты, и LED2 будет выключен.

Конденсаторы С4 и С9 предотвращают переключение транзисторов Т1 и Т2 во время переходных процессов. Выходное напряжение регулируется с помощью потенциометров VR1 и VR3.

VR2 используется для грубой регулировки, в то время как VR3 используется для более точной регулировки выходного напряжения.

Соберите схему на плате. Подайте примерно 18-20 В на разъем CON1. Свечение светодиода LED1 указывает на наличие входного питания. LED2 светится, когда срабатывает ограничение по току.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector