Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Всё о симметричном мультивибраторе

Всё о симметричном мультивибраторе

Схема мультивибратора

Симметричный мультивибратор — схема, которая встречалась практически каждому начинающему радиолюбителю. С одной стороны, схема очень проста. С другой, необходимо хорошо разбираться в принципах работы мультивибратора, потому что эта схема даёт основу многим другим электронным узлам: формирователям импульса, триггерам, делителям частоты и т.д.

Общие принципы работы мультивибратора

Как сказано в энциклопедии, «симметричный мультивибратор — это двухкаскадный усилитель, охваченный положительной обратной связью». Посмотрим на схему:

Двухкаскадный усилитель с обратной связью

Рис. 1. Двухкаскадный усилитель с положительной обратной связью

Если Вы читали статью об усилительном каскаде на транзисторе, то все действующие лица на этой схеме Вам хорошо знакомы. Это разделительный конденсатор C, базовый резистор Rб, задающий ток смещения, и Rк в качестве нагрузки. И таких каскада здесь два, они абсолютно одинаковы.

Что необычно — это провод обратной связи (на схеме показан красным), который замыкает наш двухкаскадный усилитель в кольцо. Именно благодаря положительной обратной связи наш усилитель превращается в генератор, управляя сам собой и поддерживая незатухающие колебания.

Процессы, происходящие в мультивибраторе

Давайте теперь более детально разберём, какие электронные процессы происходят в мультивибраторе. Но для начала перерисуем его схему более «традиционным» образом, подчёркивая симметричность:

Схема симметричного мультивибратора

Рис. 2. Та же схема, скомпонованная по-другому

Можете сравнить и убедиться, что это та же самая схема, что на предыдущем рисунке. Я оставил прежние обозначения элементов, чтобы легче было понять, к какому именно из двух каскадов относится та или иная деталь.

Включение питания

В первый момент после включения питания оба транзистора начинают открываться. Откуда берётся открывающий ток? Рассмотрим на примере транзистора T1

Процессы в мультивибраторе в момент включения питания

Рис. 3. Момент включения питания: токи, открывающие транзистор

Первый, очевидный путь — через Rб1, на рисунке синяя стрелка. Второй, не столь очевидный — через конденсатор C1. Не будем забывать, что в первый момент времени конденсатор разряжен, его сопротивление практически нулевое, и в цепи возникает ток заряда через Rк2 — С1 — эмиттерный переход T1. Этот путь показан красной стрелкой.

Тут важно отметить, что коллекторные сопротивления Rк в этой схеме значительно меньше базовых Rб, как минимум на порядок, а то и на несколько. Значит, «красная» составляющая в первый момент будет давать больший вклад.

Борьба транзисторов

Однако полностью открыться оба транзистора не успевают. Дело в том, что, открываясь, транзистор начинает мешать своему коллеге. К примеру, как только у T2 появляется коллекторный ток, потенциал на правой обкладке C1 падает. По сути, ток через конденсатор начинает течь в обратном направлении: через Rб1 — C1 — коллекторный переход T2:

Направление тока через открывающийся транзистор

Рис. 4. Направление тока через открывающийся транзистор

Получается, что на базе T1 потенциал падает, T1 стремится закрыться. Но, закрываясь, он ускоряет открытие T2, что приводит к ещё большему запиранию T1.

Эти же рассуждения можно симметрично применить к T2. То есть транзисторы борются друг с другом, стремясь открыться и при этом закрыть соседа.

Равновесие тут не наступает, обязательно в итоге один из транзисторов побеждает и полностью открывается, переходя в режим насыщения, а его коллега полностью закрывается. Дело в том, что, хоть транзисторы у нас и одинаковой модели, но физически невозможно создать два абсолютно идентичных транзистора. У одного из них коэффициент усиления будет чуточку выше, этот транзистор и выйдет победителем. Пусть для определённости у нас T1 окажется закрыт, а T2 открыт.

Генерация

Все вышеописанные процессы происходят очень быстро, они лимитируются только быстродействием транзисторов. После этого схема стабилизируется и находится в устойчивом состоянии. Однако, эта стабильность только кажущаяся, т. к. продолжаются некоторые процессы, связанные с зарядом-разрядом конденсаторов:

Процессы в метастабильном состоянии

Рис. 5. После переключения транзисторов: быстрый заряд C2 и медленный заряд C1

Во-первых, конденсатор C2 достаточно быстро заряжается — сопротивление Rк1 сравнительно мало. На рисунке путь его зарядки показан красной линией.

Если C2 быстро зарядился и ток через него прекратился, что же поддерживает транзистор T2 открытым? Ответ: ток через Rб2. Этот ток хоть и поменьше, чем через C2 в первый момент, но его вполне достаточно, чтобы транзистор был полностью открыт (находился в режиме насыщения).

Во-вторых, конденсатор C1 тоже заряжается, но помедленнее из-за относительно большого сопротивления Rб1 — см. синюю линию на рисунке. Заметим, что напряжение на C1 приложено плюсом к базе T1, и по мере заряда С1 оно растёт. В какой-то момент (при достижении значения порядка 0.6 В) оно станет достаточным для открытия T1, и этот транзистор откроется.

А тут в засаде поджидает C2, уже давно полностью заряженный и уставший от безделья. После открытия T1 получается так, что весь накопленный потенциал C2 оказывается приложен к эмиттерному переходу T2, причём в запирающей полярности, из-за чего T2 мгновенно закрывается:

Мультивибратор - момент переключения

Рис. 6. В момент открытия T1 конденсатор C2 запирает T2

Пояснение: ток не течёт по красной линии, это только показано направление потенциала. Дело в том, что эмиттерный переход T2 запирается этим потенциалом и его сопротивление очень велико. Более того, закрываясь, T2 ускоряет открытие T1, т.к. потенциал на его коллекторе растёт, и заставляет конденсатор C1 ещё больше разряжаться через эмиттерный переход T1, открывая его. Получается такой лавинообразный самоусиливающийся процесс одновременного переключения транзисторов в противоположное состояние.

Ну а дальше события начинают повторяться симметрично: C2 потихоньку перезаряжается в противоположной полярности, через Rб2 и только что открывшийся T1, пока его потенциал не становится достаточным для открытия T2, и снова происходит переключение транзисторов и так далее.

Частота мультивибратора

Отметим, что заряд конденсатора через Rб продолжается сравнительно долго по времени, а вот переключение транзисторов происходит практически мгновенно. Поэтому мультивибратор генерирует прямоугольные импульсы. А их частота определяется временем заряда конденсаторов:

где f — частота (Гц), C — ёмкость в фарадах, R — сопротивление в омах

Остаётся добавить парочку технических замечаний. Первое: у мультивибратора два выхода, сигнал можно снимать и с коллектора T1 и с коллектора T2. Эти два сигнала находятся в противофазе, в некоторых схемах используется это свойство и задействованы оба сигнала. При подключении нагрузки важно не зашунтировать транзистор, иначе есть риск внести искажения в работу мультивибратора, или даже вовсе сорвать генерацию. Лучше всего нагрузку подключать параллельно коллекторному сопротивлению.

Ну и второе замечание. Очевидное, но без его упоминания статья была бы неполная: мы разбираем здесь схему на основе транзисторов n-p-n, но точно также мультивибратор можно построить на транзисторах p-n-p, поменяв полярность питания. А также на радиолампах, операционных усилителях, логических элементах и т. д. — главное, чтобы были два усилительных каскада, охваченных ОС. Одна из таких схем будет приведена ниже.

Работающая схема

Чтобы наглядно продемонстрировать работу мультивибратора, я собрал схемку на макетной плате. Последовательно с Rк1 и Rк2 поставил по светодиоду.

Номиналы деталей следующие:

  • T1, T2 — С1815
  • Rк1, Rк2 — 1 кОм
  • Rб1, Rб2 — 47 кОм
  • C1, C2 — 10 мкФ (электролитические, подключаются плюсом к коллектору, минусом к базе)
  • Напряжение питание — 5 В.

Рис. 7. Работающая модель мультивибратора

Альтернативные схемы

Рассмотрим несколько альтернативных схем, а также некоторые способы улучшить характеристики мультивибратора.

Мультивибраторы с регулировкой частоты и скважности

Мультивибраторы с регулировкой частоты и скважности

Рис. 8. Схема мультивибратора с регулировкой частоты (слева) и скважности (справа)

В левой схеме за счёт переменного резистора меняются величины Rб, значит, и частота генератора. В правой сумма Rб1 + Rб2 остаётся неизменной, но меняется соотношение сопротивлений в базовых цепях. Таким образом, частота фиксирована, зато меняется скважность (соотношение длины импульса и паузы). Строго говоря, это уже несимметричный мультивибратор.

Читать еще:  Регулировка по прижиму в цапфах пластиковые окна

Мультивибратор с улучшенной формой сигнала

Если Вы внимательно читали объяснение работы мультивибратора выше, Вы помните, что после переключения транзисторов происходит быстрый перезаряд одного из конденсаторов через коллекторный резистор Rк (см. рис. 5, красная линия). Однако, поскольку полезный сигнал снимается именно с коллектора, меняющееся на конденсаторе напряжение вносит в этот сигнал совершенно ненужные помехи. В схеме на следующем рисунке введён дополнительный резистор, через который и происходит тот самый заряд конденсатора:

Мультивибратор с улучшенной формой сигнала

Рис. 9. Разделяем пути заряда и разряда конденсаторов: улучшаем форму сигнала

От коллектора конденсатор отделён диодом, который не даёт конденсатору искажать фронт импульса в момент переключения транзисторов. Но этот же диод прекрасно позволяет конденсатору заряжаться во время квази-стабильного состояния мультивибратора между переключениями через Rб — диод — открытый транзистор.

Мультивибратор на логических элементах

Мультивибратор на логических элементах

Рис. 10. Мультивибратор на элементах 2И-НЕ

Альтернативную схему мультивибратора на логике смотрите в этой статье.

Трёхфазный мультивибратор

Трехкаскадный мультивибратор

Рис. 11. Схема трехкаскадного мультивибратора

Здесь последовательно включены не два каскада, а три. Работает схема таким образом, что в каждый момент времени 2 транзистора открыты, один закрыт. Вы можете сами попробовать разобраться в работе этой схемы, взяв за основу описание симметричного мультивибратора выше.

Большая Энциклопедия Нефти и Газа

Если схема мультивибратора не симметрична и, в частности, емкости конденсаторов Ct и С значительно отличаются по величине, то за время разряда конденсатора малой емкости другой конденсатор не успевает полностью восстановить свой заряд. При этом амплитуда выходных импульсов уменьшается.  [49]

Рассматривается схема тиристорно-транзисторных мультивибраторов ( ТТМ) с управляемыми и неуправляемыми тиристорами. Приводятся три принципа построения схем, различающихся способом выключения тиристора. Соответственно рассматриваются: ТТМ, использующие неустойчивый режим тиристора; ТТМ, использующие тиристорный релаксатор с индуктивностью и ТТМ с обратной связью между транзисторным каскадом и тиристором. По сравнению с мультивибраторами, выполненными исключительно на тиристорах или транзисторах, приводимые схемы обладают рядом качественных преимуществ. Основными из них являются значительная скважность; широкая и плавная регулировка длительности импульса и в некоторых схемах длительности паузы; хорошая температурная стабильность длительности импульса при использовании делителя напряжения или тринисторов со стабилитронами; отсутствие влияния нагрузки на параметры генерации; равенство амплитуды выходных импульсов напряжению источника питания. Анализ схем проводится с учетом применения отечественных маломощных тиристоров.  [50]

От схемы самовозбуждающегося мультивибратора легко перейти к схеме ждущего мультивибратора, совершающего рабочий цикл при воздействии управляющего импульса. Транзисторы схемы работают как усилители на резисторах, причем их базовые напряжения различны. В исходном состоянии левый транзистор, базовое напряжение которого отрицательно, закрыт, а правый — открыт. При поступлении положительного импульса на базу левого транзистора он открывается, и его коллекторное напряжение быстро падает. Этот отрицательный перепад напряжения через конденсатор С передается на базу правого транзистора и закрывает его, при этом коллекторное напряжение возрастает. Положительный импульс напряжения через цепочку RiCi поступает на базу левого транзистора, поддерживая его открытым.  [52]

Рассматривается схема тиристорно-транзисторных мультивибраторов ( ТТМ) с управляемыми и неуправляемыми тиристорами. Приводятся три принципа построения схем, различающихся способом выключения тиристора. Соответственно рассматриваются: ТТМ, использующие неустойчивый режим тиристора; ТТМ, использующие тиристорный релаксатор с индуктивностью и ТТМ с обратной связью между транзисторным каскадом и тиристором. По сравнению с мультивибраторами, выполненными исключительно на тиристорах или транзисторах, приводимые схемы обладают рядом качественных преимуществ. Основными из них являются значительная скважность; широкая и плавная регулировка длительности импульса и в некоторых схемах длительности паузы; хорошая температурная стабильность длительности импульса при использовании делителя напряжения или тринисторов со стабилитронами; отсутствие влияния нагрузки на параметры генерации; равенство амплитуды выходных импульсов напряжению источника питания. Анализ схем проводится с учетом применения отечественных маломощных тиристоров.  [53]

Расчет схем мультивибраторов начинают с выбора сопротивлений Ra, исходя из условий внешней нагрузки или необходимой длительности переднего фронта.  [54]

Параметры схем мультивибраторов выбираются с таким расчетом чтобы транзисторы открывались до состояния насыщения и поддерживались в этом состоянии в интервалах между лавинообразными процессами. Такой режим делает работу схемы более стабильной, а форму вырабатываемых импульсов более четкой.  [55]

Параметры схем мультивибраторов выбираются с таким расчетом, чтобы транзисторы открывались до состояния насыщения и поддерживались в этом состоянии в интервалах между лавинообразными процессами. Такой режим делает работу схемы более стабильной, а форму вырабатываемых импульсов более четкой.  [56]

Налаживание схемы мультивибратора следует начинать с проверки режимов ламп и определения коэффициентов усиления каскадов при разорванной цепи обратной связи. При этих измерениях следует в катодные цепи включить сопротивления и емкости для создания нормального отрицательного смещения в цепях управляющих сеток.  [57]

Принимаем схему мультивибратора ( рис. 9.26) и выбираем лампу — двойной триод типа 6Н1П, у которого входная и выходная емкости CgK 3 8 пф; Сак 1 75 пф; сопротивление открытого промежутка сетка — катод г 1 3 ком; допустимая мощность рассеяния на аноде ра.  [58]

Синхронизировать схему мультивибратора , подавая на базу одного из транзисторов отрицательные импульсы от генератора 26 — И.  [60]

Мультивибратор

Мультивибратор является одним из самых распространённых генераторов импульсов прямоугольной формы, используемый в электронике и радиотехнике. Обычно представляет собой двухкаскадный резистивный усилитель, охваченный глубокой положительной обратной связью.

В электронной технике используются самые различные варианты схем мультивибраторов, которые различаются между собой схемотехникой, типом используемых активных компонентов (ламповые, транзисторные, тиристорные, микроэлектронные и другие), различающиеся режимом работы (автоколебательный, ждущие, с внешней синхронизацией), видом связи между усилительными элементами, способам регулировки длительности и частоты генерируемых импульсов и другими параметрами.

Содержание

История [ править | править код ]

Мультивибратор изобретён в годы Первой Мировой войны французскими учеными Анри Абрахамом и Эженом Блохом и впервые описан в статье, опубликованной в журнале Annales de Physique в 1919 г. [1]

Название мультивибратор для устройства предложил голландский физик ван дер Поль, и отражает тот факт, что в спектре прямоугольных колебаний мультивибратора присутствует множество высших гармоник — в отличие от генератора синусоидальных колебаний («моновибратора»).

Некоторые типы и классификация мультивибраторов [ править | править код ]

Существуют три типа мультивибраторов в зависимости от режима работы:

  • нестабильный, автоколебательный или астабильный: устройство непрерывно генерирует колебания и самопроизвольно переходит из одного состояния в другое. При этом не обязателен внешний сигнал синхронизации, если не требуется захват частоты колебаний.
  • моностабильный: одно из состояний является стабильным, но другое состояние неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов, переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
  • бистабильный: мультивибратор устойчив в любом из двух состояний и может быть переключён из одного состояния в другое подачей внешних импульсов. Такие устройства называют бистабильными триггерами. Такие триггеры иногда называют «мультивибраторами», что не корректно, так эти триггеры есть лишь подкласс мультивибраторов но никак не мультивибраторы вообще.

Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор генерирует импульсы только тогда, когда на его вход поступают синхронизирующие сигналы.

Читать еще:  Как правильно отрегулировать дверные петли в шкафах

Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удаётся синхронизовать частоту колебаний автоколебательного мультивибратора под частоту синхронизирующего сигнала или сделать кратной ей (режим «захвата частоты») для автоколебательных мультивибраторов.

«Мультивибратор» Шмитта [ править | править код ]

Иногда мультивибраторами называют триггеры Шмитта — электронные схемы, физически являющиеся не мультивибраторами, но компараторами с гистерезисом.

Симметричный мультивибратор [ править | править код ]

Приведенная в качестве примера на рисунке «классическая» схема мультивибратора на двух транзисторах одного типа проводимости сейчас почти не применяется, так как имеет плохие частотные свойства и недостаточно крутые фронты, что ограничивает частоту его генерации единицами МГц. При уменьшении номиналов компонентов (сопротивлений резисторов и ёмкости конденсаторов) для повышения частоты генерации оба транзистора переходят в открытое или насыщенное состояние без генерации, — генерация самопроизвольно срывается, и для восстановления генерации устройство надо перезапускать, — например, подачей импульса на базу одного из транзисторов, что во многих применениях неприемлемо.

Симметричным мультивибратор называют при попарном равенстве сопротивлений резисторов R1 и R4, R2 и R3, ёмкостей конденсаторов C1 и C2, а также параметров транзисторов Q1 и Q2.

Симметричный мультивибратор генерирует прямоугольные колебания («меандр») со скважностью 2, то есть прямоугольный сигнал, у которого длительность импульса и длительность паузы одинаковы.

Симметричный мультивибратор по «классической» схеме широко используется для учебных и демонстрационных целей в качестве схемотехнически простейшего генератора электрических колебаний. Принцип работы этой схемы легко понять, а также эта схема удобна тем, что не требует для своей реализации громоздких и неудобных катушек индуктивности и трансформаторов.

Ждущие мультивибраторы [ править | править код ]

Моностабильный мультивибратор [ править | править код ]

Моностабильный мультивибратор, также нередко называемый одновибратором, есть разновидность ждущего мультивибратора. Имеет одно стабильное состояние и одно неустойчивое состояние. При поступлении запускающего импульса одностабильный мультивибратор переключается в неустойчивое состояние на время t = ln ⁡ ( 2 ) ⋅ R 2 ⋅ C 1 cdot C_<1>> , причём это время не зависит от длительности запускающего импульса (для схемы на рисунке 2), а затем возвращается в устойчивое состояние.

Бистабильный мультивибратор [ править | править код ]

Бистабильный мультивибратор — разновидность ждущего мультивибратора, имеющий два стабильных (устойчивых) состояния, характеризующихся разными уровнями напряжения на выходе. Как правило, бистабильные мультивибраторы переключаются из одного стабильного состояние в другое сигналами, подаваемыми на разные входы, как показано не схеме на рисунке. В этом случае бистабильный мультивибратор представляет собой триггер RS-типа. В некоторых схемах для переключения используется один вход, на который для переключения подаются импульсы различной либо одной полярности, при переключении состояний импульсами одной полярности на одном входе такие устройства называют «триггерами со счётным входом».

Бистабильный мультивибратор, кроме выполнения функции триггера, применяется также для построения генераторов, синхронизированных внешним сигналом. Такой тип бистабильных мультивибраторов характеризуется минимальным временем пребывания в каждом из состояний или минимальным периодом колебаний. Изменение состояния мультивибратора возможно только по прошествии определённого времени с момента последнего переключения (так называемое «мёртвое время переключения») и происходит в момент поступления фронта синхронизирующего сигнала.

Мультивибратор на операционном усилителе [ править | править код ]

Принципиально можно построить автоколебательный мультивибратор на инвертирующем компараторе с гистерезисом, охваченном отрицательной обратной связью. Пример такой структуры с использованием операционного усилителя (ОУ) приведён на рисунке справа.

Делитель напряжения из пары резисторов R4, включенных в цепь обратной положительной связи переводят ОУ в режим компаратора с гистерезисом по инвертирующему входу, к которому подключена интегрирующая цепочка R2, C1. При переключении компаратора из состояние в состояние происходит изменение направления тока в интегрирующей цепочке и конденсатор начинает перезаряжаться в другую сторону до достижения другого порога компарации, и переключения полярности напряжения на выходе ОУ. В этой схеме ОУ выполняет сразу несколько функций: источника напряжений разряда и заряда конденсатора, компаратора и выходного ключа.

Принцип действия «классического» двухтранзисторного мультивибратора [ править | править код ]

Схема может находиться в одном из двух нестабильных состояний и периодически переходит из одного в другое и обратно. Фаза перехода очень короткая относительно длительности нахождения в состояниях благодаря глубокой положительной обратной связи, охватывающей два каскада усиления.

Пусть в состоянии 1 Q1 закрыт, Q2 открыт и насыщен, при этом C1 быстро заряжается током открытого базового перехода Q2 через R1 и Q2 почти до напряжения питания, после чего при полностью заряженном C1 через R1 ток прекращается, напряжение на C1 равно (ток базы Q2)·R2, а на коллекторе Q1 — напряжению питания.

При этом напряжение на коллекторе Q2 невелико (равно падению напряжения на насыщенном транзисторе).

C2, заряженный ранее в предыдущем состоянии 2 (полярность по схеме), медленно разряжается через открытый Q2 и R3. При этом напряжение на базе Q1 отрицательно и этим напряжением он удерживается в закрытом состоянии. Запертое состояние Q1 сохраняется до того, пока C2 не перезарядится через R3 и напряжение на базе Q1 не достигнет порога его отпирания (около +0,6 В). При этом Q1 начинает приоткрываться, напряжение его коллектора снижается, что вызывает начало запирания Q2, напряжение коллектора Q2 начинает увеличиваться, что через конденсатор C2 ещё больше открывает Q1. В результате в схеме развивается лавинообразный регенеративный процесс, приводящий к тому, что Q1 переходит в открытое насыщенное состояние, а Q2 наоборот полностью запирается.

Далее колебательные процессы в схеме периодически повторяются.

Длительности нахождения транзисторов в закрытом состоянии определяются постоянными времени для Q2 — T2 = С1·R2, для Q1 — T1 = C2·R3.

Номиналы R1 и R4 выбираются намного меньшие, чем R3 и R2, чтобы зарядка конденсаторов через R1 и R4 была быстрее, чем разрядка через R3 и R2. Чем больше будет время зарядки конденсаторов, тем положительней окажутся фронты импульсов. Но отношения R3/R1 и R2/R4 не должны быть больше, чем коэффициенты усиления соответствующих транзисторов, иначе транзисторы не будут открываться полностью.

МЕТОДЫ РЕГУЛИРОВАНИЯ ДЛИТЕЛЬНОСТИ ИМПУЛЬСА

Регулировать tИ можно изменением постоянной времени R2 * C2. Для этого надо изменять емкость С2 или сопротивление R2. Объясним это. С увеличением постоянной времени уменьшается скорость, с которой изменяется на­пряжение на базе VT2 в течение рабочего состояния. Напряжение UБ 2 позже достигает порогового значения Un, и длительность им­пульса возрастает. Этот метод можно применять при небольших пределах изменения tu, так как при увеличении R2 транзистор VT2 может выйти из насыщения, а при сильном умень­шении R2, наоборот, может вой­ти в глубокое насыщение, и ре­жим работы одновибратора нару­шится. Кроме этого, увеличение R2 ведет к росту температурной нестабильности, а увеличение ем­кости конденсатора С2 приводит к возрастанию времени восста­новления.

Другой способ регулировки состоит в изменении начального напряжения на конденсаторе времязадающей цепи. Данный спо­соб регулировки показан на рис. 8. Регулирующее напряжение Up на конденсаторе С2 подают через диод VD, причем Up < .

В исходном состоянии диод VD открыт напряжением Ек и по­тенциал на коллекторе закрытого транзистора фиксируется на уровне Up. Разность Ек—Up падает на резисторе RК2 из-за проте­кания через него тока открытого диода. Конденсатор С2 оказыва­ется заряженным до напряжения Uc2= Up — UБЭ НАС 2. Таким обра­зом, после запуска мультивибратора напряжение на базе закрытого транзистора VT2 будет изменяться от значения Up — UБЭ НАС 2 , стремясь к Ек. (рис. 8,б). Чем меньше Up, тем раньше напряжение UБ 2 достигнет порогового значения Un и тем меньше длительность выходного импульса.

Читать еще:  Регулировка яркости при чтении

Наряду с регулированием длитель­ности выходного импульса в мультивибраторе (рис. 8,а) умень­шается длительность восстановления. Это явление поясняют вре­менные диаграммы, приведенные на рис. 8,б. После обратного опрокидывания устройства конденсатор С2 заряжается и напряже­ние на коллекторе транзистора VT1 растет, стремясь к Ек. Однако в тот момент, когда UК1 достигает значения, примерно равного Up, от­крывается диод и процесс восстановления заканчивается.

Схема и принцип действия. На рис. 9-а представлена схема автоколебательного мультивибратора, а на рис. 9-б — временные диаграммы, поясняющие его работу.

Мультивибратор состоит из двух каскадов на транзисторах VT1 и VT2. Причем вход каж­дого каскада (база) подключен через конденсатор к выходу дру­гого (к коллектору). Такое включение обеспечивает наличие пет­ли положительной обратной связи в то время, когда оба транзис­тора работают в активном режиме. Мультивибратор имеет все элементы, присущие релаксационному генератору: конденсаторы C1 и С2 являются накопителями энергии, транзисторы VT1 и VT2 выполняют роль коммутирующих устройств. Резисторы R1, R2 вхо­дят в цепи разряда конденсато­ров.

Первое квазиустойчи­вое состояние. Будем счи­тать, что к моменту t1 мульти­вибратор перешел в очередное квазиустойчивое состояние, при этом VT1 закрылся, а VT2 от­крылся и вошел в насыщение. К этому моменту напряжение UС1 на конденсаторе C1 имело макси­мальное значение, равное Ек — UБЭ НАС 1 (конденсатор C1 заря­жен, а конденсатор С2 разряжен).

К базе транзистора VT1i через открытый VT2 прикладывает­ся напряжение UБ1 ≈ — UС1 (напряжение UБ1 между базой и эмиттером транзистора VT1 определяется суммированием напряжения вдоль внешнего по отношению к транзистору контура при обходе его от базы к эмиттеру).

Таким образом, транзистор VT1 удерживается в закрытом со­стоянии под действием отрицательного напряжения с конденсато­ра C1, приложенного к базе. Транзистор VT2 остается открытым, поскольку в его базу поступает ток IБ2 = IR2 + IC2, где IR2—состав­ляющая базового тока, протекающая через резистор R2, IC2 — со­ставляющая базового тока, протекающая через RК1 и С2. С момента t1 начинаются два процесса — разряд C1 и заряд C2.

Разряд C1 в автоколебательном мультивибраторе аналогичен соответствующему процессу в квазиустойчивом состоянии ждуще­го мультивибратора.

Разряд конденсатора C1 осуществляется током IC1, протекающим в цепи: положительный полюс источника Ек, резистор R1, конденса­тор C1, открытый переход коллектор—эмиттер транзистора VT2, земля, отрицательный полюс источника Ек.

Под действием этого тока, являющегося частью коллекторного тока транзистора VT2, конденсатор С2 стремится не просто разрядиться, а переза­рядиться до напряжения, близкого к Ек, но противоположной по­лярности. При этом напряжение на базе транзистора VT1, меняющееся так же, как и напряжение на C1, нарастает по экспо­ненте с постоянной времени R1 * C1 от минимального значения стремясь к значению Ек. В момент t2, когда напряжение UБ 1 достигает порого­вого значения, транзистор VT1 открывается. Отрицательное напря­жение с зарядившегося конденсатора C2, примерно равное —Ек, через открытый VT1 прикладывается к базе VT2, вследствие чего VT2 закрывается и мультивибратор переходит в новое квазиус­тойчивое состояние.

Процесс заряда конденсатора С2, аналогичный процессу вос­становления в ждущем мультивибраторе, осуществляется под дей­ствием составляющей базового тока IС 2. Составляющая IС 2 протекает в цепи: положительный полюс источника Ек, резистор RК1, конденсатор С2, открытый переход база — эмиттер транзистора VT2, земля, отрицательный полюс ис­точника Ек и заряжает конденсатор С2. Напряжение на нем рас­тет по экспоненте с постоянной времени RК1 * С2, стремясь к Ек. По такому же закону уменьшается ток заряда и создаваемое им напряжение на резисторе RК1. При этом напря­жение UК1 растет, стремясь к Ек. После окончания заряда конден­сатора С2, когда IC2 = 0, транзистор VT2 продолжает оставаться открытым благодаря току , протекающему через R2. Процесс заряда конденсатора С2 определяет длительность фронта TФ1 выходного импульса, форми­руемого на коллекторе транзистора VT1. Поскольку сопротивление резистора RК2 всегда бывает меньше сопротивления резистора R1, то заряд конденсатора С2 заканчивается раньше разряда C1 и время нахождения мультивибратора в квазиустойчивом состоя­нии определяется разрядом C1.

Второе квазиустойчивое состояние. В новом квазиустойчивом состоянии в мультивибраторе происходят процес­сы, аналогичные описанным выше, только в другой его части. Те­перь разряжается конденсатор С2 частью коллекторного тока транзистора VT1, протекающего по цепи +Ек, R2, C2, VT1, -Ек. При этом напряжение на базе транзистора VT2 изменяется по эк­споненте с постоянной времени R2 * С2 (рис. 9,б). В момент t3, когда напряжение UБ 2 достигнет значения Uп, вновь открывается транзистор VT2 и мультивибратор возвращается в первое квази­устойчивое состояние. В это же время заряжается конденсатор С1, частью базового тока транзистора VT1, протекающего по цепи C1, RK2, Ек, VT1. Таким образом, автоколебательный мультивибратор периодически переходит из одного квазиустойчивого состояния в другое.

Как видно из временных диаграмм на рис. 9,б, напряжение на коллекторах транзисторов представляет собой последователь­ность импульсов положительной полярности, форма которых близка к прямоугольной.

Параметры формируемой импульсной последовательности. Рас­смотрим основные параметры импульсной последовательности, формируемой мультивибратором.

Процессы, определяющие длительность импульса в каждом квазиустойчивом состоянии мультивибратора, того же характера, что и в ждущем мультивибраторе. Поэтому выражения, описыва­ющие основные параметры ждущего мультивибратора, справедли­вы и в данном случае.

Период следования импульсов, как это видно из временных диаграмм на рис. 9,б, равен сумме длительности импульсов:

Частота следования импульсов, генерируемых мультивибрато­ром,

Длительность фронта. Фронт выходного импульса имеет экспоненциальную форму в связи с тем, что зарядный ток времязадающего конденсатора протекает через резистор RК за­крытого транзистора и создает падение напряжения на RК, на­правленное встречно Ек. Поэтому напряжение на коллекторе не может сразу после запирания транзистора установиться на уров­не Ек. По мере заряда конденсатора ток заряда и создаваемое им напряжение на RК уменьшаются, а напряжение на коллекторе закрытого транзистора стремится к установившемуся значению Ек с постоянной времени RК * С, где С=С1 или С2, а RК = RК1 или RК2. Для инженерных расчетов считают, что длительность фронтов равна:

Амплитуда импульсов в отсутствие нагрузки определяется раз­ностью уровней напряжения на коллекторах открытого и закры­того транзистора. Можно считать, что напряжение на коллекторе закрытого транзистора близко к Ек, а на коллекторе открытого примерно равно нулю, т. е.

РЕГУЛИРОВАНИЕ ЧАСТОТЫ АВТОКОЛЕБАТЕЛЬНОГО МУЛЬТИВИБРАТОРА

Поскольку частота колебаний автоколебательного мультивибратора выражается через длительность выходных импульсов, то для ее регулирования применимы те же методы, что и в ждущем мультивибраторе. При этом следует иметь в виду, что для сохра­нения неизменной скважности регулировку частоты необходимо осуществлять одновременным изменением tИ1 и tИ2 на одинаковое значение.

Способ регулировки частоты изменением постоянной времени времязадающих цепей имеет те же недостатки, которые отмеча­лись при изучении ждущего мультивибратора. Только увеличение емкости времязадающей цепи в данном случае ведет не к увели­чению времени восстановления, а к удлинению фронта выходного импульса. Плавное регулирование частоты мультивибратора мо­жет осуществляться по схеме, приведенной на рис. 10. В этом случае для создания смещения на базах транзисторов используется отдельный источник, напряжение которого можно регулиро­вать.

В процессе формирования выходного импульса напряжение на конденсаторе времязадающей цепи меняется по экспоненциаль­ному закону от Ек, стремясь к значению Un. С уменьшением Ecм должна уменьшаться скорость изменения напряжения на конден­саторе (рис. 10,б), это напряжение позже достигает нулевого значе­ния.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector