Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как сделать блок питания с плавной регулировкой напряжения

Как сделать блок питания с плавной регулировкой напряжения

Рецепт создания хорошего лабораторного блока питания

Рано или поздно перед каждым радиолюбителем постает проблема универсального блока питания, которым можно и ардуино, и преобразователь 12-220 запитать. Решений может быть три.

1. Купить заводской лабораторник. Быстрое, и дорогое решение, не каждый может себе позволить качественный блок напряжением 25 – 30В и током хотя бы 5А, с ограничением тока, регулируемой защитой от К.З., автоматического управления кулером, защиты от переплюсовки при заряде аккумулятора. Качество многих можно проверить, лишь вскрыв корпус, что лишает гарантии, на что может согласиться не каждый.

2. Сделать самому. Данный пункт имеет несколько подпунктов, таких как ремонт поломанного заводского блока, который достался по дешёвке, или даром.Модернизирование заводского блока, обычно сопровождается выкидыванием силовых ключей, как в преобразователе, так и в самом стабилизаторе, перерабатывается схема защит, повышается напряжение на преобразователе, и максимальная мощность. Или собрать по готовой схеме, как большинство и делает, в интернете представлено большое множество различных схем, о которых мы ещё поговорим, рассчитаны на разную мощность, работают по-разному, имеют неодинаковую сложность воплощения и настройки.

3. Безусловно, самым интересным и познавательным способом для подготовленных юзеров паяльников, это придумать схему самому, по личные потребности. Такой подход максимально результативен в опытных руках, но данная статья облегчит конструирование новеньким в электронной тематике. Здесь учитываются все аспекты с предыдущих подходов. Для начала нужно определиться с применением блока, для чего он вам нужен? Если для ремонта мобилок, хватит и простой конструкции с плавной регулировкой от 0 до 5-6В со стабилизацией тока, и защитой от К.З., если для домашней лаборатории могут понадобиться напряжения до 30 – 40В и токи до 10 – 15А для различных целей, и так далее. Не последним фактором в подборе характеристик становится реализуемость устройства, и цена комплектующих, которые зависят от напряжения и мощности блока питания, так же его типа регулировки. Далее понадобится определиться с источником питания, трансформатор или импульсник, настоятельно рекомендую импульсник, так как хорошая экранировка убережёт ваше радио от помех, а если нужна очень малошумящий источник при работе с чувствительными приборами и инструментами, то однозначно сетевой трансформатор. Теперь следует выбрать, в каких цепях будет происходить регулировка, в первичной, «горячей» части прибора, или во вторичной. Если нужна точность, и плавная регулировка от нуля, пойдёт только вторичная, а если наоборот нужна грубая мощность, рекомендую первичную, через её относительную неприхотливость перед мощной нагрузкой, но понадобиться отдельное питание генератора, или гальваническую развязку в случае с симисторным регулятором, да бы на переменнике не накапливалась статика. Ну а теперь осталось только определиться с нужными защитами, и автоматическими регулировками, если блок для лаборатории настоятельно советую включить все защиты. Ну а теперь пора выбирать между импульсной и линейной схемой управления силовым транзистором, так же от выбранной схемы будет, зависит тип транзистора: полевой или биполярный. Немаловажным есть обратная связь, когда выходное напряжение сверяется с той, которую вы задали, без неё блок не может быть стабилизированным, так как без неё напряжение будет проседать соотвецтвенно приложенной нагрузки. Но в причину того, что в средстве оптимальной обратной связи используют ОУ, которые имеют ограниченный запас по напряжению питания, ограниченного в 36В, отсюда и максимальное напряжение на выходе микросхемы тоже ограничено, поэтому питать его от кренки бесполезно. Следует помнить, что микросхема так же имеет сопротивление, поэтому максимальное напряжение на выходе меньше напряжения на шине питания. После этого нужно выбрать, что вам ближе микроконтроллер, или аналоговый регулятор. У обоих методов есть свои недостатки и преимущества. Например, микроконтроллер боится статики, и напряжение, ток будут регулироваться при помощи энкодера, с определённым шагом, который например можно установить кнопкой, в этом самом энкодере, так же, можно прям на этом контроллере написать вольтамперметр. Напротив аналоговый регулятор обеспечит бесконечно тонкую настройку, при использовании многооборотного резистора, например от модуля подстройки частоты советского телевизора. Но те боятся наводок, ограничены применяемой схемой управления, так же от этого зависит плавность, и линейность регулировки. Вот основные параметры схемы подобраны, последним, но не по сложности исполнения будет то, что нужен вам однополярный или двуполярный источник питания, схематически всё просто, берётся два блока, соединяется + с одного, и – с другого, это будет земля двуполяра, а остальные два провода – и + плечо соотвецтвенно. Разумеется, при более глубоком анализе схемы можно зазеркалить схему, и получить второе, — плечо, при этом все полупроводники нужно либо взять противоположной проводимости (транзисторы, интегральные стабилизаторы), либо повернуть в другую сторону(диоды, стабилитроны), либо инвертировать выходы/входы(микроконтроллер, ОУ, логическая микросхема). Нарисовав готовую схему обеих блоков, можно избавиться от части деталей/силовых обмоток импульсного/сетевого трансформатора. Так же на стадии разработки важно подумать, как всё будет реализовано, например не стоит разводить плату с местом для силового транзистора, лучше шиной подвести питание прям с моста. И на нужный вывод транзистора, так же и выходом, шину прям на клемму, а обратную связь подцепить мелким проводом с клеммы, так можно избежать мелких потерь на проводах, так же в качестве шины можно использовать радиатор, прикрутив транзистор без слюды, но при этом радиатор лучше поместить внутри корпуса. Ну и небольшой совет по экономии электроэнергии заключается в том, что всегда лучше выключить блок размыканием сетевых проводов (силовых), тогда прибор абсолютно не потребляет ток от сети, а стартует он и так быстро. А если нужно отключить питание на выходе быстро, что бы ни отпаивать провода от исследуемой конструкции, можно просто сделать на выходе фиксируемый тумблер, или заземлять базу/затвор силового ключа. Можно так же делать это не только непосредственно у ключа, но и за пару каскадов до него, тогда ток через кнопку можно будет уменьшить резистором. Осталось только набросать блок – схему, а потом либо самому придумать схемы к отдельным блокам, либо найти готовые. Часто будут востребованы ОУ в компараторном включении, триггер Шмидта, источники образцового напряжения, ШИМ – контроллеры, буферные усилители, фильтра низких частот, LCфильтры для силовых линий, RCпомехоподавляющие фильтры для регуляторов напряжения/тока, различные программы для работы с АЦП микроконтроллера.

Вот такая вот получилась инструкция к конструктору «лабораторный блок питания своими руками», а вот вам несколько кирпичиков, из которых можно соорудить страшнейшую махину.

Сравнивает два напряжения на входах, если на + входе будет больше чем на – то на выходе логическая 1, шина питания другими словами, если наоборот, то логический 0, земля в простонароде. Опорное напряжение можно подать на любой вход, только будет изменяться тенденция работы схемы. Например, на + вход опорное напряжение, а на – обратная связь, как на рисунку ниже. Тогда, если на выходе блока будет меньше напряжение чем на опорном, то на выходе будет логический 1, транзистор откроется, и напряжение будет выше, чем на опорном, будет логический 0, и транзистор закроется. Несмотря на кажущийся парадокс, просто схема стабилизируется, и на выходе будет напряжение равное опорному, и на выходе ОУ будет уже не логический сигнал, а аналоговый, так как напряжения на входах примерно одинаковое (если бы оно было одинаковым, то на выходе была бы средняя точка)

Читать еще:  Как регулировать отопление ленинградка

3877542507.jpg

Ещё одно важное дело – триггер Шмидта, сгодится в температуро – управляемым кулером, так как имеет гистерезис. То есть разницу между включением и выключением. Нам ведь надо что бы, например кулер включился на 50 градусах, а выключился на 35, например.

От себя добавлю схему защиты на полевом транзисторе, может похвастаться высоким быстродействием.

В качестве опорного напряженияможно обойтись и стабилитроном шунтированным плёнкой, но немного надёжнее кренка. Проблемы с максимальным выходным напряжением? Просто на обратной связи сделайте регулятор, как на первой схеме.

56559841.jpg

На ШИМ контроллерах останавливаться не буду, больше написано в многочисленных даташитах. Добавить могу то, что очень хорошо показывает себя TL494.

Хороший усилитель напряжения (вплоть до шины питания) на транзисторах, оптимизирован для работы с затворами

3475645131.jpg

Думаю приводить схемы фильтров нецелесообразно. Так как полно ресурсов, на которых их можно и рассчитать. Так же немного стабильности в жизнь блока принесёт даже самый маленький дроссель, и небольшой кондёрчик после него. А ёмкости на выходе много не надо, иначе вольтметр будет тормозить за регулировкой, и даже разряжающий резистор не поможет. А вот на входе можно и побольше, но не забывайте про плёнку, так как электролиты шумят.

Подвесной лабораторный блок питания из доступных компонентов

Как сделать подвесной лабораторный блок питаниясвоими руками.

Давно хотелось собрать компактный лабораторный блок питания, далее ЛБП. Я уже собирал ЛБП, но он получился тяжеловатый. Он включал в себя трансформатор и диодный мост на отечественных диодах. Теперь же я решил собрать на модулях. Они легкие, компактные и довольно мощные.

Материалы

  • понижающий модуль;
  • регулировочный модуль;
  • корпус;
  • индикатор напряжения и тока;
  • сетевой тумблер;
  • регулировочные резисторы;
  • клеммы;
  • инструменты.

Описание материалов

Понижающий модуль из Китая. Выходное напряжение составляет 24 вольта, то 4 ампера. Модуль компактный, что в моем случае в самый раз.

Регулировочный модуль из Китая. Вроде как за 300 Ватт. Но у меня ограничено 4 Амперами понижающего модуля, то есть до 100 Ватт.

Корпус от старого модема или роутера. Корпус крепкий и плоский, но мои комплектующие влезут.

Индикатор выходных напряжения и тока тоже китайский. Вольты отображаются красным. Амперы синим.

Тумблер от старой техники. Модель Т3. Вроде на 2.5 Ампера.

Вместо установленных подстроечных резисторов, я поставлю регулировочные резисторы. Нашел в закромах две ручки, жаль что не было синей, было бы под цвет индикатора тока.

Выходные клеммы от старого прибора. Соответственно разного цвета.

Сборка

В корпусе проделываю отверстия под индикатор и клеммы. Да, верх ногами.

Корпус будет подвешен на полку. Такое расположение очень удобно, не занимает место на столе.

Прикидываю расположение модулей в корпусе. Лишний пластик удаляю. Креплю модули.

Соединяю проводами понижающий и регулировочный модули. Подстроечные резисторы удаляю, выношу на проводах регулировочные.

Сбоку расположена ниша, в нее установлю сетевой тумблер. Распаиваю тумблер и подсоединяю сетевой шнур. Нужно было сделать сетевой шнур съемным. Но не нашел разъем.

Для плавной регулировки напряжения, параллельно регулировочному резистору, установил постоянны резистор 27 кОм. Так же установил выходные клеммы.

Для питания индикатора собрал схему на TL431. Решил не питать от выходных 24 вольт. Рассчитать стабилизатор можно в он-лайн калькуляторе.

Соединил все компоненты проводами. Стабилизатор питания индикатора прикрепил термоклеем.

Провода с разъемами служат для подключения индикатора. Можно собирать корпус. Индикатор устанавливаю в последнюю очередь.

Корпус скручен. Индикатор установлен. Нагружаю автомобильной лампой. Ток чуть более 4 Ампер. Такой ток не стоит долго применять. Возможно перегреется понижающий модуль.

Теперь можно крепить наш блок питания к полке.

Такой вот лабораторный блок питания получился. Хотя не регулируется от нуля, примерно 1.2 вольта. Для домашнего использования в самый раз.

Видео по сборке

Лабораторный блок питания Longwei LW-K3010D: один за всех!

Лабораторные блоки питания отличаются от обычных возможностью регулировки выходных параметров (напряжения и тока защиты) и, дополнительно, могут напряжение и ток измерять и доводить до сведения пользователя.

Благодаря этому пользователь (обычно — радиолюбитель или специалист по настройке или ремонту техники) может не разводить у себя на столе гору разнообразных блоков питания и измерителей тока и напряжения, а пользоваться одним-единственным прибором (что и отображено в заголовке обзора).

Сегодня мы познакомимся с лабораторным блоком питания Longwei LW-K3010D, рассчитанным на максимальное напряжение выхода 30 Вольт при максимальном выходном токе 10 Ампер (обе эти цифры являются частью наименования блока).

Помимо регулировки выходного напряжения (от нуля!), блок позволяет регулировать и величину тока срабатывания защиты (тоже от нуля).

Блок был приобретён на AliExpress, цена на момент составления обзора составляла около $53 (в дальнейшем может меняться).

Проверить актуальные цены можно здесь Вариант 1 или здесь Вариант 2 (вариант 2 — с индикатором на 4 знака).

Технические характеристики лабораторного блока питания Longwei LW-K3010D
Тип блокаИмпульсный
Выходное напряжение0 — 30 В
Регулировка тока защиты0 — 10 А
Измеряемые параметрыТок, напряжение (3-значная индикация)
Вес1.34 кг
Габариты233 x 71 x 159 мм

С пульсациями, стабильностью и прочим будем разбираться по ходу обзора.

Дизайн и внутреннее устройство лабораторного блока питания LW-K3010D (30 В, 10 А)

Боковая поверхность содержит множество отверстий для вентиляции.

Лицевую панель рассмотрим более детально:

Сверху расположены трёхзначные индикаторы напряжения и тока, далее вниз — обычная механическая кнопка ВКЛ/ВЫКЛ, переменники настройки выходного напряжения и тока защиты, пара светодиодов (зелёный — нормальная работа, красный — перегрузка), и, наконец, три выходных гнезда для подключения кабелей со штырями или клеммами.

Переменный резистор установки напряжения — многооборотный, и им, действительно, можно при достаточной аккуратности установить выходное напряжение с точностью до 0.1 Вольт.

Переменник установки тока защиты — обыкновенный, но от него и не требуется высокой точности.

Два крайних гнезда внизу (чёрное и красное) предназначены для подключения нагрузки, а среднее (желтое) — со схемой блока не соединяется, а соединяется с нулевым проводом в разъёме питания на задней стенке блока.

Соответственно, при питании блока от двухпроводной бытовой сети этот контакт получается ни с чем не соединённым.

Посмотрим на лабораторный блок питания сзади:

Здесь, конечно. сразу бросается в глаза решетка вентилятора.

Вентилятор здесь не включается сразу «на всю катушку» при включении блока питания. Он начинает вращаться только по мере необходимости, т.е. при нагреве блока.

Благодаря этому достигаются сразу две цели: и вентилятор не надоедает непрерывным жужжанием, и блок питания не перегревается.

Кстати, вентилятор работает на вдув воздуха. Не забывайте хотя бы раз в год чистить блок от пыли!

Под решеткой вентилятора — переключатель 110/220 Вольт. Перед первым включением проверьте, что он — в правильном положении.

Под ним — почти обычный питательный разъём, как в компьютере.

Но он — не совсем обычный: в его нижней части расположен лоток с плавким предохранителем.

Также на задней панели есть маркировка, в том числе со ссылкой на сайт производителя. Но на момент обзора сайт не работал, показывал «ошибку 522»; так что этот ссылку на этот сайт приводить не буду.

Снизу блока питания — традиционные 4 резиновых ножки:

Ножки — хорошие, не скользят.

Глянем, для порядка, на «комплектуху», прилагаемую к блоку питания (сетевой шнур не показан):

Кабель для подключения нагрузки имеет «тропическую» конфигурацию — с «бананами» и «крокодилами».

Руководство пользователя содержит полезные сведения в части того, как настроить ток защиты.

Читать еще:  Как отрегулировать давление в гидроаккумуляторе в системе отопления

Кратко, это делается так: установить напряжение 3-5 V, выкрутить регулировку тока на ноль, сделать «козу» (короткое замыкание) на выходе, регулировкой тока установить желаемый ток защиты, убрать короткое замыкание.

Теперь — делаем разборку блока питания. Проблемы это не представляет, крышка держится на пяти винтах без всяких хитростей.

Смотрим на главную плату лабораторного блока питания LW-K3010D:

Схема блока питания — весьма и весьма непроста. Ограничусь кратким описанием только силовой части.

Напряжение сети проходит через фильтр с индуктивными элементами и ёмкостями и поступает на мост KBU810 (1000 В, 8 А), затем — на два «больших» электролита 560 мкФ 200 В.

В качестве мощных ключевых транзисторов применены MOSFET-ы FQPF10N60C.

Их основные характеристики: предельное напряжение 600 В, предельный ток 9.5 А, максимальная мощность 50 Вт, сопротивление в открытом состоянии — не более 0.73 Ом.

Они установлены на радиаторы; один из радиаторов установлен на плате кривовато (не трогаем, а то сломаем!).

В низковольтной силовой части применён сдвоенный диод Шоттки MBR30200CT с радиатором (макс. обратное напряжение 200 В, макс прямой ток — 15 А на каждое плечо). Далее — фильтры из индуктивностей и шести электролитических кондёров.

Интересно, что плата содержит маркировку LW-K305D (в левом верхнем углу на фото). Вероятно, что точно такая же плата используется и в блоке питания K305D (30 В, 5 А).

Возможно, более слабый блок отличается более слабой силовой частью. А может, и ничем не отличается, кроме настроек. 🙂

Ещё одна небольшая плата в блоке питания прикреплена к лицевой панели. Она отвечает за измерения и индикацию.

Попытаемся её рассмотреть, не откручивая.

На этой маленькой плате видим две маленькие микросхемки, отвечающих за измерение напряжения и тока.

А самое главное на этой плате — два синеньких многооборотных резистора-подстроечника, с помощью которых можно подстроить показания встроенного вольтметра и амперметра, если они окажутся неточными.

Эти подстроечники обозначены на плате VRV1 (для напряжения) и ARV2 (для тока).

Забегая вперёд, скажу, что необходимости крутить подстроечник напряжения не было; а вот подстроечник тока пришлось слегка крутануть. Но это — потом, а пока досматриваем картинки вскрытия блока.

Последняя из картинок «потрохов» блока — вид главной платы с обратной стороны:

Здесь нет, в общем-то, ничего особо интересного.

Видна пара разрезов на плате, помогающих обеспечить электробезопасность устройства.

Вверху видна пара керамических резисторов, которая, видимо, просто не поместилась на основной стороне платы.

На этом можно завершить рассказ о конструкции и перейти непосредственно к тестам.

Технические испытания лабораторного блока питания LW-K3010D (30В 10А)

Испытания начинаем с традиционного так называемого «опробования» — контроле общей работоспособности и проверки, нет ли где существенных погрешностей.

Для этого нагружаем блок питания на не очень большую нагрузку, и проверяем сначала максимальное выдаваемое блоком напряжение:

Здесь с чувством глубокого удовлетворения отмечаем, что показания собственного вольтметра блока питания и внешнего прибора совпали «тютелька в тютельку».

Дальше ещё более развиваем достигнутое чувство глубокого удовлетворения и отмечаем, что лабораторный блок питания смог отдать напряжение даже выше, чем заявлено в его технических данных (32 В при заявленных 30 В).

Теперь устраиваем аналогичную проверку для контроля измерения тока:

А вот тут уже вышла нестыковочка в показаниях: собственный амперметр блока питания показал 1.48 Ампера, а внешний прибор — только 1.38 Ампера.

Пришлось открывать блок питания и подкрутить синенький подстроечник ARV2 до тех пор, пока показания не совпали.

Все дальнейшие тесты проведены уже с подстроенным собственным амперметром блока питания.

Сейчас — самый главный тест: выдаст ли блок питания заявленные 10 Ампер?!

10 Ампер, ведь это, знаете ли, очень серьёзный ток!

Поскольку мощность рассеяния в таком режиме ожидалась около 300 Вт, то тут никакая китайская электронная нагрузка на «прокатывала».

Пришлось для охлаждения нагрузки (резистора 3 Ом) использовать дополнительное специальное оборудование: стакан из комплекта «Bacardi» и тарелочку с голубой каёмочкой. В стакан была налита вода примерно наполовину.

Максимальный ток оказался 9.63 Ампера, т.е. чуть ниже заявленного (10 А). При попытке ещё больше повысить ток он уже не повышался, а ограничивался на этой величине. Кроме того, загорался красный светодиод — превышение тока защиты.

Расхождение с заявленным максимальным током оказалось небольшим — всего 3.7%. В связи с этим всё-таки ставим «зачёт» блоку питания по выполнению заявленного максимального тока.

Через пару минут работы в таком режиме вода в стакане закипела:

На этом данный эксперимент был завершен.

Теперь приступаем к более тонким экспериментам — проверке на пульсации выходного напряжения при разной нагрузке.

Сначала — проверка при токе в 1 Ампер (лёгкая нагрузка):

В целом всё — довольно благообразно; а короткие «иголки» на осциллограмме, вероятнее всего, не «всплески» выходного напряжения, а просто помехи, попавшие на кабели.

Однако уже при токе в 2.8 Ампера осциллограмма стала меня беспокоить:

Частота пульсаций составила чуть выше 2 кГц. Это — довольно странная величина, поскольку не похожа ни на частоту питающей сети, ни на частоту импульсного преобразователя.

Форма пульсаций — почти идеальный синус.

И при токе в 9 Ампер (близко к максимуму) началась просто какая-то вакханалия пульсаций:

Величина пульсаций колебалась на уровне 0.6 — 0.7 Вольт.

«Это провал», — подумал Штирлиц.

А вот как выглядели эти пульсации в более мелком масштабе по шкале времени:

В надежде как-то снизить размер пульсаций я полез в свой ящик с радиобарахлом и достал оттуда самый ёмкий электролит, который только у меня был, — 10000 мкФ.

Но реакция на его подключение оказалась совершенно непредсказуемой: пульсации не просто снизились, а полностью исчезли, «от слова совсем»:

Повторение эксперимента полностью подтвердило: при подключении ёмкого электролита параллельно выходу пульсации не просто уменьшаются, а исчезают. Эффект оказался устойчив даже при снижении ёмкости дополнительного внешнего электролита до 1000 мкФ (ниже не пробовал).

Что это было? Вероятнее всего, какой-то реальный резонанс в цепи выходного фильтра; или же «виртуальный» резонанс сквозь все цепочки обратной связи в блоке питания. Подключение дополнительного конденсатора вынесло его частоту за те пределы, где его могли «раскачать» внутренние процессы блока питания; и он исчез.

Но этот спасительный электролитический конденсатор внутрь блока питания встраивать я не стал.

Я философски рассудил, что в устройствах, для которых важно качество питания, и так уже бывает напаяно электролитов по самое некуда.

А об устройствах, менее чувствительных к качеству питания, вообще нет повода беспокоиться.

В итоге я оставил блок питания «как есть» и собираюсь и далее им пользоваться на благо себя, любимого (как мне хочется верить).

После этих философских рассуждений позвольте перейти к последнему эксперименту — определению реакции на короткое замыкание ("козу") и выход из него.

При выходе из короткого замыкания блок питания ведёт себя правильно: напряжение нарастает более-менее плавно; и, главное — никаких выбросов вверх выше установленного номинала напряжения нет!

Какого-то заметного температурного ухода выходного напряжения обнаружить не удалось. Возможно, это связано с тем, что блок сам по себе хорошо борется с повышением температуры (включает вентилятор, когда надо).

Окончание симпозиума

Теперь пора сделать выводы из всей проделанной работы.

Начну с того, что блок лабораторный блок питания LW-K3010D не только выполнил, но и перевыполнил заявленные параметры (по напряжению перевыполнил на 2 Вольта — вместо 30 В осилил целых 32 В). Лишние два Вольта всегда пригодятся!

Читать еще:  Регулировка арматура двухкнопочная для унитаза

Есть у него проблема с пульсациями, но она — решаемая.

Как я пояснял в обзоре, я решил не бороться с пульсациями, а оставить всё «как есть». Но радиолюбители-перфекционисты могут для успокоения совести установить внутрь блока питания электролитический конденсатор для полного гашения пульсаций. Только надо помнить, что его номинальное напряжение должно быть строго выше 32 В.

В качестве особого преимущества этого блока питания отмечу, что, благодаря узкой вертикальной конструкции он занимает на столе очень мало места. Собственно, это и была одна из причин его выбора (главная причина — это всё-таки его высокая выходная мощность).

И, на всякий случай напомню, где его можно купить: Вариант 1 или здесь Вариант 2. Если где-то точно такой же блок вдруг найдётся дешевле, то тоже можно брать — товар одинаковый.

Самодельный регулируемый блок питания от 0 до 14 Вольт.

Здравствуйте уважаемые читатели сайта sesaga.ru. У каждого радиолюбителя, в его домашней лаборатории, обязательно должен быть регулируемый блок питания, позволяющий выдавать постоянное напряжение от 0 до 14 Вольт при токе нагрузки до 500mA. Причем такой блок питания должен обеспечивать защиту от короткого замыкания на выходе, чтобы не «сжечь» проверяемую или ремонтируемую конструкцию, и не выйти из строя самому.

Эта статья, в первую очередь, рассчитана на начинающих радиолюбителей, а идею написания этой статьи подсказал Кирилл Г. За что ему отдельное спасибо.

Внешний вид самодельного регулируемого блока питания

Предлагаю Вашему вниманию схему простого регулируемого блока питания, который был собран мной еще в 80-е годы (в то время, я учился в 8 классе), а схема была взята из приложения к журналу «Юный Техник» №10 за 1985 год. Схема немного отличается от оригинала изменением некоторых германиевых деталей на кремниевые.

Схема регулируемого блока питания

Как видите, схема простая и не содержит дорогих деталей. Рассмотрим ее работу.

1. Принципиальная схема блока питания.

Включается блок питания в розетку при помощи двухполюсной вилки ХР1. При включении выключателя SA1 напряжение 220В подается на первичную обмотку (I) понижающего трансформатора Т1.

Трансформатор Т1 понижает сетевое напряжение до 1417 Вольт. Это напряжение, снимаемое со вторичной обмотки (II) трансформатора, выпрямляется диодами VD1VD4, включенными по мостовой схеме, и сглаживается фильтрующим конденсатором С1. Если не будет конденсатора, то при питании приемника или усилителя в динамиках будет слышен фон переменного тока.

Диоды VD1VD4 и конденсатор С1 образуют выпрямитель, с выхода которого постоянное напряжение поступает на вход стабилизатора напряжения, состоящего из нескольких цепей:

1. R1, VD5, VT1;
2. R2, VD6, R3;
3. VT2, VT3, R4.

Резистор R2 и стабилитрон VD6 образуют параметрический стабилизатор и стабилизируют напряжение на переменном резисторе R3, который включен параллельно стабилитрону. С помощью этого резистора устанавливают напряжение на выходе блока питания.

На переменном резисторе R3 поддерживается постоянное напряжение, равное напряжению стабилизации Uст данного стабилитрона.

Когда движок переменного резистора находится в крайнем нижнем (по схеме) положении, транзистор VT2 закрыт, так как напряжение на его базе (относительно эмиттера) равно нулю, соответственно, и мощный транзистор VT3 тоже закрыт.

При закрытом транзисторе VT3 сопротивление его перехода коллектор-эмиттер достигает нескольких десятков мегаом, и практически все напряжение выпрямителя падает на этом переходе. Поэтому на выходе блока питания (зажимы ХТ1 и ХТ2) напряжения не будет.

Когда же транзистор VT3 открыт, и сопротивление перехода коллектор-эмиттер составляет всего несколько Ом, то практически все напряжение выпрямителя поступает на выход блока питания.

Так вот. По мере перемещения движка переменного резистора вверх, на базу транзистора VT2 будет поступать отпирающее отрицательное напряжение, и в его эмиттерной цепи (БЭ) потечет ток. Одновременно, напряжение с его нагрузочного резистора R4 подается непосредственно на базу мощного транзистора VT3, и на выходе блока питания появится напряжение.

Чем больше отрицательное отпирающее напряжение на базе транзистора VT2, тем больше открываются оба транзистора, тем большее напряжение на выходе блока питания.

Наибольшее напряжение на выходе блока питания будет почти равно напряжению стабилизации Uст стабилитрона VD6.

Резистор R5 имитирует нагрузку блока питания, когда к зажимам ХТ1 и ХТ2 ничего не подключено. Для контроля выходного напряжения предусмотрен вольтметр, составленный из миллиамперметра и добавочного резистора R6.

На транзисторе VT1, диоде VD5 и резисторе R1 собран узел защиты от короткого замыкания между гнездами ХТ1 и ХТ2. Резистор R1 и прямое сопротивление диода VD5 образуют делитель напряжения, к которому своей базой подключен транзистор VT1. В рабочем состоянии транзистор VT1 закрыт положительным (относительно эмиттера) напряжением смещения на его базе.

При коротком замыкании на выходе блока питания эмиттер транзистора VT1 окажется соединенным с анодом диода VD5, и на его базе (относительно эмиттера) появится отрицательное напряжение смещения (падение напряжения на диоде VD5). Транзистор VT1 откроется, и участком коллектор-эмиттер зашунтирует стабилитрон VD6. В результате этого транзисторы VT2 и VT3 окажутся закрытыми. Сопротивление участка коллектор-эмиттер регулирующего транзистора VT3 резко возрастет, напряжение на выходе блока питания упадет почти до нуля, и через цепь короткого замыкания потечет настолько малый ток, что он не причинит вреда деталям блока. Как только короткое замыкание будет устранено, транзистор VT1 закроется и напряжение на выходе блока восстановится.

2. Детали.

В блоке питания использованы самые распространенные детали. Понижающий трансформатор Т1 можно использовать любой, обеспечивающий на вторичной обмотке переменное напряжение 14 – 18 Вольт при токе нагрузки 0,4 – 0,6 Ампер.

Детали блока питания

В оригинале статьи используется готовый трансформатор от кадровой развертки Советских телевизоров — типа ТВК-110ЛМ.

Диоды VD1 – VD4 могут быть из серии 1N40011N4007. Также подойдут диоды, рассчитанные на обратное напряжение не менее 50 Вольт при токе нагрузки не менее 0,6 Ампер.
Диод VD5 желательно германиевый из серии Д226, Д7 — с любым буквенным индексом.

Диоды и стабилитрон

Электролитический конденсатор любого типа, на напряжение не менее 25 Вольт. Если не будет одного с емкостью 2200 микрофарад, то его можно составить из двух по 1000 микрофарад, или четырех по 500 микрофарад.

Электролитический конденсатор

Постоянные резисторы используются отечественного МЛТ-0,5, или импортного производства мощностью 0,5 Ватт. Переменный резистор номиналом 5 – 10 кОм.

Резисторы

Транзисторы VT1 и VT2 германиевые — любые из серии МП39 – МП42 с любым буквенным индексом.

Цоколевка транзисторов МП39 - МП42

Транзистор VT3 – из серии КТ814, КТ816 с любым буквенным индексом. Этот мощный транзистор обязательно устанавливается на радиатор.

Цоколевка транзисторов серии КТ814 - КТ817

Радиатор можно использовать самодельный, сделанный из пластины алюминия толщиной 3 – 5см и размером около 60х60мм.

Стабилитрон VD6 будем подбирать, так как у них идет большой разброс по напряжению стабилизации Uст. Возможно, даже придется составить из двух. Но это уже при наладке.

Вот основные параметры стабилитронов серии Д814 А-Д:

Параметры стабилитронов серии Д814 А-Д

Миллиамперметр используйте такой, какой у Вас есть. Можно использовать индикаторы от старых приемников и магнитофонов. Одним словом – ставьте что есть. А можно даже вообще обойтись без прибора.

На этом хочу закончить. А Вы, если заинтересовала схема, подбирайте детали.
В следующей части начнем рисовать и делать печатную плату с нуля, возможно, распаяем на ней детали.
Удачи!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector