Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить кулер к блоку питания: пошаговая инструкция

Как подключить кулер к блоку питания: пошаговая инструкция

Как подключить кулер к блоку питания: пошаговая инструкция

Охлаждение блока питания в системнике компьютера не менее важно, чем видеокарты, процессора или винчестера. Разберемся с тем, можно ли подключить кулер к блоку питания. Производители заботятся о системе охлаждения внутреннего пространства и деталей компьютера изначально. Но, если ваш ПК без кулера, подключенного к блоку питания компьютера, или тот вышел из строя, вы можете как установить, так и заменить его самостоятельно.

Определяемся с распиновкой кулера

Выбирая кулер, нужно обратить внимание на некоторые нюансы. Одним из них является распиновка (схема) контактов.

Определяемся с распиновкой кулера

Суть в том, что в компьютере для подключения кулера всегда предусмотрен 4-контактный разъем. А вот кулеры бывают:

  • 2-контактные (2-pin);
  • 3-пиновые;
  • 4- pin.

Рассмотрим, как подключить кулер к блоку питания компьютера.

  1. Основные два провода, которые есть в любой распиновке – это + (напряжение) и – (заземление). Недостаток двухпиновых кулеров – невозможность регулировать скорость оборотов вентилятора без дополнительного оборудования.
  2. Теперь разберемся с тем, как подключить трехпиновый кулер.

Такие устройства, помимо основных резъемов, снабжены третьим, подающим сигнал о скорости вращения лопастей вентилятора на материнскую плату. В сравнении с 2- pin, за оборотами з-pin кулера можно следить и регулировать их с помощью ПО.

Для подключения таких кулеров нужно воспользоваться переходником или оставить незадействованными дополнительные разъемы.

  1. Кулер с 4 проводами. Дополнительный провод подает сигнал на материнскую плату, которая, через него, может управлять оборотами вентилятора.
  2. Довольно распространенный четырехпиновый коннектор Molex.

Четырехпиновый коннектор Molex для кулера

У него 2 разъема напряжения – 12 и 5 V – и два соответствующих заземления. Такие коннекторы дают возможность менять напряжение на кулере, тем самым регулировать обороты вентилятора. Если 12 V много, а 5 мало, можно подключиться к разъемам напряжения наоборот и получить на выходе 7 V.

Порядок подключения

Теперь пошагово рассмотрим процесс подключения кулера к блоку питания компьютера.

Отключаем компьютер от сети

Какие бы действия не предстояло проводить с ПК, начинать всегда нужно с его полного выключения и отсоединения от электросети. Перед разборкой системного блока отключите все кабели. Снимите боковую панель системника.

Фиксируем кулер

Фиксируем кулер на ПК

  1. Добравшись до блока питания, снимите крышку, отсоедините и уберите старый кулер, если он есть.
  2. Аккуратно поставьте новый на место и прикрутите.

Замена кулера старый на новый

Подключение к блоку питания

Теперь, нужно подсоединить кулер к питанию – найдите разъем для подключения этого кулера. Закройте и закрутите крышку БП, затем верните на место боковую панель компа.

Подключение кулера к блоку питания

Встречаются модели блоков питания, в которых кулер подключается припайкой проводов. В таком случае, вам придется обрезать разъем на своем кулере, зачистить и припаять провода.

Иногда пользователи имеют неиспользуемые охладители, например кулер видеокарты, а вентилятору блока питания требуется замена. Встает вопрос: «Можно ли и как подключить кулер видеокарты к блоку питания компьютера?». Разъем на кулере видеокарты отличается от того, что на устройстве для БП, поэтому нужно такой разъем заменить или вообще убрать, а кулер подключить к блоку питания напрямую – припаять.

Маркировка проводов

Во время подключения кулера, можно столкнуться с проблемой, связанной с тем, что разные производители дают разные цветовые маркировки:

  • провод заземления (первый слева, а в Molex два средних) всегда идет в черном исполнении;
  • второй (в Molex два крайних) – напряжение – может быть красным или желтым;
  • сигнальный провод (третий) у одних производителей желтый, у других – зеленый;
  • четвертый – управление оборотами – практически всегда имеет синюю обмотку.

Поэтому, если на вашем кулере цвета проводов отличаются от цветовой маркировки разъемов на БП, ориентируйтесь на их порядок.

Что если кулер не работает

Если вы не проверяли кулер при покупке, может оказаться, что вам «подсунули» нерабочий, отнесите его к продавцу и замените (если есть гарантия) или придется покупать новый.

Если вновь установленный кулер не работает, первое, что нужно сделать – проверить его подключение. Возможно, вы просто не полностью вставили разъем и напряжение на него не поступает.

Как вариант, проблема с настройками программ, регулирующих работу вентилятора – они могут быть сделаны таким образом, что вентилятор запускается только при достижении на блоке питания определенной температуры. Проверьте и если этот так, снизьте показатель температуры до минимума или вообще отключите такую опцию.

Не исключено, что есть неполадки в самом устройстве, например, неработающий разъем. В таком случае, его нужно заменить на новый, лучше всего Molex – современный и хорошо себя зарекомендовавший.

Самый надежный вариант замены кулера – купить точно такой же, как был установлен изначально, и подключать новый аналогично. Даже если вы впервые решились установить кулер в компьютер самостоятельно, у вас все получится. Главное – следовать инструкции.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

У каждого дома скопилось немало компьютерных вентиляторов: кулеров от процессора, видеокарты и блоков питания ПК. Их можно поставить на замену сгоревшим, а можно подключить к блоку питания напрямую. Применений этому может быть масса: в качестве обдува в жаркую погоду, проветривание рабочее место от дыма при пайке, в электронных игрушках и так далее.

Вентиляторы обычно имеют стандартные размеры, из которых на сегодняшний день наиболее популярными являются 80 мм и 120 мм кулеры. Подключение их также стандартизировано, поэтому всё что вам нужно знать — это распиновку 2, 3 и 4 контактного разъёма.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

На современных системных платах на базе шестого или седьмого поколения процессоров intel, как правило, распаяны только 4 pin разъёмы, а 3 pin уже уходят в прошлое, так что мы увидим их только в старых поколениях кулеров и вентиляторов. Что касается места их установки — на БП, видеоадапторе или процессоре, это не имеет никакого значения так как подключение стандартное и главное здесь цоколёвка разъёма.

Распиновка проводов кулера 4 pin

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Здесь скорость вращения можно не только считывать, но и изменять. Это делается при помощи импульса от материнской платы. Он способен в режиме реального времени возвращать информацию на тахогенератор (3-х штырьковый на это неспособен, так как датчик и контроллер сидят на одной ветке питания).

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка разъёма кулера 3 pin

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Наиболее распространённый тип вентилятора — 3 пин. Кроме минуса и 12 вольтового провода здесь появляется третий, «тахо»-проводок. Он садится напрямую на ножку датчика.

  • Черный провод — земля (Ground/-12В);
  • Красный провод — плюс (+12В);
  • Желтый провод — обороты (RPM).

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Распиновка проводов кулера 2 pin

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Простейший кулер с двумя проводами. Наиболее частая цветность: чёрный и красный. Чёрный — рабочий «минус» платы, красный — питание 12 В.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Здесь катушки создают магнитной поле, которое заставляет ротор крутиться внутри магнитного поля, создаваемого магнитом, а датчик Холла оценивает вращение (положение) ротора.

Как подключить 3-pin кулер к 4-pin

Для подключения 3-pin кулера к 4-pin разъему на материнской плате для возможности программной регулировки оборотов служит вот такая схема:

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

При прямом подключении 3-х проводного вентилятора к 4-х контактному разъёму на материнке вентилятор будет всегда вращаться, потому как у материнской платы не будет возможности управления 3 pin вентилятором и регулировки числа оборотов кулера.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Подключение кулера к БП или батарейке

Для подключения к блоку питания используйте штатные разъёмы, если же нужно изменить число оборотов (скорость) — нужно просто уменьшить подаваемое на кулер напряжение, причём делается это очень просто — переставлением проводков на гнезде:

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Так можно подключить любой вентилятор и чем меньше напряжение — тем меньше скорость, соответственно тише его работа. Если компьютер не особо греется, но очень шумит — можете воспользоваться таким методом.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Для запитки его от батарей или аккумуляторов просто подайте плюс на красный, а минус на чёрный провод кулера. Вращаться он начинает уже от 3-х вольт, максимум скорости будет где-то на 15-ти. Больше напряжение увеличивать нельзя — сгорят обмотки мотора от перегрева. Потребляемый ток будет примерно 50-100 миллиампер.

Устройство и ремонт кулера ПК

Для того чтобы разобрать вентилятор, нужно снять наклеенный шильдик со стороны проводов, открыв доступ к резиновой заглушке, которую и извлекаем.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Подцепим пластмассовое или металлическое полукольцо любым предметом с острым концом (нож канцелярский, часовая отвёртка с плоским шлицем и т.п.) и снимаем с вала. Взору открывается моторчик, работающий от постоянного тока по бесщёточному принципу. На пластиковой основе ротора с крыльчаткой по кругу вокруг вала закреплен цельнометаллический магнит, на статоре — магнитопровод на медной катушке.

Распиновка кулера: подключение 3 pin и 4 pin вентилятора

Затем почистите отверстие под ось и капните туда немного машинного масла, соберите обратно, поставьте заглушку (чтоб пыль не забивалась) и пользуйтесь уже гораздо более тихим вентилятором дальше.

У всех таких вентиляторов бесколлекторный механизм вращения: это надёжность, экономичность, бесшумность и возможность регулировки оборотов.

У современных кулеров разъёмы имеют гораздо меньший размер, где первый контакт пронумерован и является «минусом», второй «плюсом», третий передаёт данные о текущей скорости вращения крыльчатки, а четвёртый управляет скоростью вращения.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

  1. виктор 26.01.2019

кулир когда-то винтилировал ядра но всё было демонтировано и все же кулир помогал вносить не малую степень понимания в наше сознание жалко подключать было методом тыка сгорит признательность правильно первым идёт 0 вторым шёл + но третий пока без надобности да и реле ещё нет

добрый день! а есть способ заставить вращаться его в другую сторону?

  • Евгений 20.02.2021

наверно плюс с минусом поменять надо, как на любом двигателе постоянного тока

Добрый день, все очень хорошо изложено автором, информативно и детально.

а через USB можно?

Большое спасибо за статью

  • 2 Схемы 20.11.2020
Читать еще:  Регулировка выходного напряжения на uc3842

Пожалуйста, рады были помочь.

«У всех таких вентиляторов бесколлекторный механизм вращения: это надёжность, экономичность, бесшумность и возможность регулировки оборотов.»
У коллекторных двигателей постоянного тока то же есть возможность точно регулировать число оборотов.

А вручную можно регулировать скорость на 3-пиновом вентиляторе, подключенному в 4-пиновый разъем на материнке?

Борьба с шумом: ставим кулер на 7 Вольт

Вы только что купили новенький кулер Thermaltake, но вам не нравится, что после его установки ваш компьютер стал шуметь, как пылесос? Вы хотите поставить Blue Orb на видеокарту, но он слишком громкий для вас? И вам плевать на охлаждение — вам не нужен разгон, вам нужна тишина? Тогда мы поможем вам. Всё, что вам нужно — понизить напряжение на кулере. В этой статье мы расскажем вам, как это сделать за пять минут, без паяльника, при наличии пинцета, или отвёрточки.

Итак, для начала. Все продающиеся сейчас кулеры для процессоров работают от напряжения 12 Вольт. Вентиляторы при этом напряжении выходят на заявленную скорость и работают в соответствии с заявленными характеристиками. И производительность, и уровень шума вентилятора пишутся для номинального напряжения. В вентиляторах используются микродвигатели, работающие на постоянном токе. Частота их вращения напрямую зависит от подаваемого напряжения. Следовательно, если мы увеличим напряжение на вентиляторе, он начнёт вращаться быстрее. Если уменьшим — медленнее. Добыть в компьютере напряжение выше 12 В можно на ATX разъёме блока питания, но нам это не нужно, ведь мы боремся с шумом, а значит, всё, что нам нужно — это немного опустить напряжение вентилятора.

В статье "Новое поколение кулеров" я упоминал способы подключения вентиляторов. Давайте вернёмся на два года назад и посмотрим на них ещё раз:

Как подключаются вентиляторы — вентиляторы для компьютерных кулеров имеют два типа подключения — через PC plug коннектор и через MOLEX коннектор.

PC plug коннектор представляет собой стандартный четырёхпроводный коннектор, используемый в большинстве компьютерных устройств. Преимущества его в том, что его использование позволяет подключить практически неограниченное число вентиляторов (при Pass-through подключении). Также при его использовании можно регулировать потребляемую вентилятором мощность. PC plug имеет четыре провода — два провода заземления (чёрных), провод с потенциалом 5 В и провод с потенциалом 12 В. Если ваш вентилятор раздражает вас своим шумом, то можно уменьшить подаваемое ему напряжения до 7В, или 5В. Для этого в первом случае его надо присоединить к двум крайним проводкам — красному и жёлтому, а во втором случае — к красному и одному из чёрных проводков. При этом соблюдайте полярность, а то ваш вентилятор будет крутиться в другую сторону.

MOLEX коннектор — более новый. Он позволяет подключать вентиляторы к материнской плате, автоматически управлять потребляемой мощностью вентилятора и отслеживать частоту вращения вентилятора. Недостатки этого коннектора — ограниченное количество подключаемых вентиляторов, зависящее от материнской платы, невозможность вручную уменьшить потребляемую мощность. Преимущества в том, что при достаточном охлаждении материнская плата понижает напряжение на вентилятор, он потребляет меньше мощности и, как следствие, меньше шумит. Также с помощью MOLEX коннектора есть возможность следить за частотой вращения вентилятора, но при условии, что в вентиляторе установлен датчик Холла.

Сегодня 95% всех продаваемых кулеров подключаются через Molex коннектор. А так как на материнской плате в Molex коннекторах присутствует только плюс и земля (сигнал мы не считаем), то самым простым способом до недавнего времени считалась запайка дополнительного сопротивления в провод, питающий вентилятор, то есть, в центральный провод. Сделать это не сложно — достаточно подобрать нужное сопротивление для вентилятора мощностью от двух до восьми ватт и подключить его в разрез среднего провода. Мы видели такое в промышленном исполнении на кулере Zalman CNPS 5000+. Правда, здесь сопротивления включались в разрез среднего провода на специальных переходниках.

Переходники

При таком регулировании можно добиться совсем разных напряжений. Но такой способ имеет ряд недостатков.

Сопротивление сильно греется при работе вентиляторов

Модифицированный таким образом вентилятор теряет гарантию (если она была)

Надо искать сопротивление

Надо использовать паяльник

Конечно же, настоящие технари выбрали бы именно этот способ, когда можно поставить реостат (резистор с изменяемым сопротивлением), но мы знаем способ лучше, легче и быстрее.

Итак, как вы могли видеть выше, между крайними проводами PCPlug коннектора всегда поддерживается напряжение 7 Вольт. Именно оно нам и нужно. Оно почти в два раза меньше, чем 12В, а значит кулер будет шуметь намного меньше, правда и охлаждая при этом слабее. Всё, что нам надо — это чтобы в комплекте к кулеру шёл переходник PCPlug-Molex. Эти переходники сегодня поставляются со всеми новыми кулерами Thermaltake, со всеми кулерами на видеокарты и системные чипы, если охладители идут в Retail, а не OEM. А так как все такие кулеры поставляются именно Retail, то вы вправе потребовать переходник с фирмы, продавшей вам компьютер с установленным, скажем, Dragon Orb 3.

Переходник PCPlug-Molex

Посмотрите на переходник. Вот он, перед нами. Он представляет собой последовательное Pass-Through соединение двух PCPlug коннекторов, чтобы при подсоединении кулера не потерять PCPlug розетку. К Male-коннектору PCPlug (со штырьками) параллельно двумя проводками подсоединён Molex коннектор (тоже со штырьками). Красный провод Molex коннектора подсоединён к жёлтому на PCPlug, а чёрный — к чёрному. Таким образом, с +12В контакта PCPlug потенциал +12В передаётся на средний провод Molex-а. Второй провод (чёрный) на Molex-коннекторе — это земля. Потенциал на этом проводе равен 0 В. Соответственно, напряжение между двумя проводами (разность потенциалов) равно 12В. Именно напряжение определяет скорость вращения вентилятора. Поэтому чтобы снизить разность потенциалов между двумя проводами, мы подадим на "землю" Molex-а положительное напряжение. Для этого чёрный провод Molex-а надо подсоединить к красному проводу на PCPlug. В результате, на одном проводе будет +12В, на другом — +5В, в результате разность потенциалов составит 7В, а так как на жёлтом проводе потенциал останется большим, направление вращения вентилятора не изменится.

PCPlug-Molex переходник

Как же нам сделать это? Довольно просто. Вся операция займёт у вас не более пяти минут. Всё, что надо иметь для этой операции — это тонкую отвёрточку, или пинцет также, возможно понадобятся пассатижи, но это по желанию.

Берём в руки ту часть переходника, к которой подключены провода от Molex-а. В этом PCPlug коннекторе мы видим контакты в форме штырьков. Это вход переходника. Именно этой стороной переходник подключается к блоку питания.

Разъём PCPlug

Как вы видите, чтобы штырьки контактов не вывалились из разъёма, они держатся двумя "крылышками". Сами штырьки свёрнуты из алюминиевой пластинки и внутри пустые. С двух сторон в них сделаны специальные крылышки, отогнутые ёлочкой, чтобы они позволяли вставить штырёк в разъём, но не вытащить его оттуда. Нам надо тоненьким пинцетом, или отвёрточкой отогнуть внутрь эти крылышки, чтобы штырьки можно было вытащить из разъёма. Нам надо поменять местами чёрный провод, который рядом с жёлтым, к которому подходит чёрный провод от Molex-а и крайний красный провод.

Штыревой контакт

После того, как вы вытащите эти два контакта, отогните крылышки обратно и вставьте красный провод на место чёрного, а чёрный — на место красного. Убедитесь, что контакты не выскакивают обратно. Всё! Теперь на Molex-е напряжение — 7 Вольт.

Модифицированный переходник

Как видите, всё очень просто. Вы можете на этом остановиться, но ведь мы перепутали провода на второй PCPlug розетке переходника. Если розеток в вашем блоке питания достаточно, то её вообще можно отрезать, или написать на ней фломастером, что она не используется и жить спокойно. Вообще, так как между жёлтым и чёрным контактом у нас 7 Вольт, то мы можем к этому переходнику и дальше подключить обычный, не переделанный PCPlug-Molex переходник и на его Molex разъёме уже будут готовы 7 Вольт. Но мы пойдём другим путём и доведём дело до конца. Сзади PCPlug розетка имеет другие контакты в виде трубочек. Они также согнуты из алюминия и также имеют крылышки, которые их удерживают на месте. Отогнуть их отвёрткой, или пинцетом будет сложно — вы их погнёте и не сможете использовать. Я переделал десятка два-три таких переходников и понял, что самый простой способ — это вырвать чёрный и красный провод вместе с контактом из розетки пассатижами. Тут удобно упереться пассатижами о заднюю стенку розетки, ухватить за провод и повернуть пассатижи. Ни разу у меня провод не отрывался от контактов. Обычно крылышки сворачиваются в другую сторону и контакт легко выходит к вам в руки. Теперь надо тоненькой отвёрткой вернуть крылышки в исходное положение — распрямить их и поставить ёлочкой.

В результате вы получите контакты, как показано на фотографии выше. Вставьте их так, чтобы провода не оказались перекручены. Красный — рядом с жёлтым, а чёрный — с краю.

Модифицированный переходник

Теперь наш переходник готов к использованию. Вы можете включать в него кулер, а с другой стороны даже винчестер. Провода не перекручены, полярность соблюдена. Точно таким же способом можно изменить напряжение кулера, который подключается через PCPlug, а не через Molex. Сейчас такие кулеры снова начинают появляться в продаже. Технология та же самая, только вы работаете с вилкой вентилятора, а не переходника.

В свои последние модели Thermaltake стала вкладывать более новые переходники PCPlug-Molex. Если вы купили Crystal Orb, Volcano 7, или Tiger, то у вас уже будет более новый переходник, без соединительных проводов между двумя PCPlug разъёмами.

Читать еще:  Дрель с регулировкой момента затяжки

PCPlug-Molex коннектор

Если у вас такой новый переходник — не бойтесь, мы и его переделаем. Я тоже не сразу понял, как он работает. Отличия этого переходника в том, что два Pass-Thru PCPlug коннектора выполнены в одном корпусе и между ними нет проводов. Конечно, в компьютере это удобнее — меньше проводов. Модификация этого переходника не сложнее предыдущего с тем лишь отличием, что здесь после конверсии мы не сможем подключать к переходнику другие устройства, питающиеся от PCPlug розетки.

Первым делом, мы видим, что провода к Molex-у отходят от середины переходника. Корпус переходника сделан таким образом, что сверху два крайних его контакта закрываются специальной крышечкой. Чтобы добраться до этих контактов, мы открываем крышечку, поддевая её с середины корпуса.

PCPlug-Molex коннектор. Открытый

По аналогии со старым переходником, нам надо вытащить чёрный провод, второй контакт справа и поставить его в самую крайнюю слева позицию. Схема извлечения контактов точно такая же, как и в обычном переходнике: тонкой отвёрткой, или пинцетом сгибаем крылышки со стороны штырьков и выталкиваем контакт наружу. Так мы поступаем с крайним слева и вторым справа контактами.

Разобранный контакт

В результате, мы видим перед собой контакт нового образца. С одной его стороны — штырёк, с другой — трубочка. С двух сторон имеются удерживающие крылышки, чтобы контакт не вываливался. Просто так вставить провод в левую позицию у нас не получится — провод упрётся в корпус переходника. Поэтому отвёрткой мы разгибаем вторую часть контакта с проводом, трубочку. Надо аккуратно разогнуть её и ещё две лапки прямо возле того места, где провод припаян к металлу. После этого мы прокладываем провод внутрь трубочки и загибаем её обратно, как показано на фотографии снизу.

Провод, проложенный внутри контакта

Делать это надо как можно плотнее, чтобы перегиб провода посередине контакта был как можно меньше. После того, как мы сделали это, ещё раз убеждаемся, что крылышки контактов расправлены и вставляем штыревой контакт в крайнюю левую позицию.

Модифицированный переходник

Теперь у нас получилось то, что вы видите на фотографии сверху. Из одного трубчатого контакта (если можно так выразиться) отходит провод, поэтому вторая сторона переходника теперь недоступна для использования. Мы закрываем пластмассовую крышечку и модифицированный переходник на 7 Вольт готов!

Модифицированный переходник

Можем смело подключать к нему вентилятор и наслаждаться тишиной в компьютере.

5 Вольт

Точно по такой же схеме мы можем переделать переходник и на напряжение 5 В, поменяв жёлтый провод с красным. Почему бы так не сделать? Дело в том, что вентиляторы имеют стартовое напряжение — такое минимальное напряжение, при котором вентилятор стартует, заводится. Если стартовое напряжение будет меньше, вентилятор будет греться, но не заработает. Для современных вентиляторов размером 60x60x25 это напряжение равно 9 В. При 7 В они ещё могут стартовать, хотя я встречал и такие, что отказывались заводиться. Ну а кроме того, при 5 В кулер уже будет очень плохо охлаждать, и смысла реализовать такую конверсию нет.

Всегда старайтесь покупать кулеры с подобными переходниками. Менее чем за пять минут, в офисных условиях, без помощи паяльника, или специальных инструментов, мы смогли понизить напряжение на вентилятор кулера, избавившись от лишнего шума. Естественно, при пониженном напряжении вентилятор гонит меньше воздуха и хуже охлаждает процессор, так что надо первое время после такой конверсии посматривать за температурой процессора. Преимущества понижения напряжения именно таким способом налицо: вы не теряете гарантию на кулер, переходник, сделанный таким образом, получается очень надёжным, он не греется и не перегорает. Ну и, конечно, простота. Если у вас нет отвёртки под рукой, можно воспользоваться булавкой, или заколкой. Сделав таким образом один переходник на семь Вольт, вы сможете оставить его на все свои следующие кулеры. Вы можете оставить провода перекрещенными, чтобы на выходе в PCPlug также было семь Вольт. Тогда все подключенные дальше кулеры будут без модификации переходников работать от напряжения 7 В и меньше шуметь.

Напоследок я хочу сказать, что не несу ответственности за все ваши ошибки, совершённые во время модификации и за все последствия таких ошибок. Этот материал — лишь теоретическая основа, а не руководство к действию. Если у вас возникнут вопросы — задавайте их не мне, а в форуме на нашем сайте.

Обзор и тестирование кулера PCCooler GI-D56V HALO RGB: четыре, пять — или без разницы?

Вслед за системой жидкостного охлаждения PCCooler и флагманской моделью воздушного кулера этой же компании мы переходим к знакомству с более доступным GI-D56V HALO RGB, который за довольно скромную сумму предлагает пользователям пять медных тепловых трубок, оптимизированный радиатор и вентилятор с регулируемой подсветкой.

⇡#Технические характеристики и стоимость

Наименование технических характеристикPCCooler GI-D56V HALO RGB
Размеры кулера (В × Ш × Т),
вентилятора, мм
150 × 134 × 80
(120 × 120 × 25)
Полная масса, г598
(455 – радиатор)
Материал радиатора и конструкцияБашенная конструкция из алюминиевых пластин на 5 медных тепловых трубках диаметром 6 мм, являющихся частью основания (технология HDT)
Количество пластин радиатора, шт.40
Толщина пластин радиатора, мм0,40
Межрёберное расстояние, мм2,0
Расчётная площадь радиатора, см 25 340
Термическое сопротивление, °С/Wн/д
Тип и модель вентилятораVortexPro RGB
Скорость вращения вентилятора, об/мин1000-2000 (±10 %)
Воздушный поток, CFM72 (макс.)
Уровень шума, дБА8-29,1 (±10%)
Статическое давление, мм H2Oн/д
Количество и тип подшипников вентилятора1, гидродинамический
Время наработки вентилятора на отказ, часов/лет30 000 / >3,4
Номинальное/стартовое напряжение вентилятора, В12 / 2,8
Сила тока вентилятора, А0,29
Заявленное/измеренное энергопотребление вентилятора, Вт3,36 / 2,98
Возможность установки на процессоры с разъёмамиIntel LGA775/115x/1366/2011(v3)/2066
AMD Socket AM2(+)/AM3(+)/AM4/FM1/FM2(+)
Максимальный уровень TDP процессора, Вт160
Дополнительно (особенности)Вентилятор с ШИМ-управлением и синхронизируемой подсветкой, термопаста с теплопроводностью 7,5 Вт/м·К
Гарантийный срок, лет1
Розничная стоимость, ₽2 170

⇡#Упаковка и комплектация

PCCooler GI-D56V HALO RGB запечатан в небольшую коробку, выполненную из плотного картона. Оформлена она в тёмных тонах, как и все упаковки систем охлаждения PCCooler, а на лицевой стороне приведено фото охладителя, соседствующее со сведениями о тепловом пакете и кратким перечнем достоинств продукта.

Боковые и обратная стороны коробки отведены под перечисление ключевых особенностей кулера и технические характеристики, в том числе и на русском.

В отличие от флагманской модели, PCCooler GI-D56V HALO RGB внутри картонной коробки облачён в две мягкие вставки, не только надёжно фиксирующие его внутри, но и отодвигающие от стенок коробки. Последнее будет полезно, если картон пробьют чем-то острым при пересылке (каким-нибудь углом, например), — сам радиатор и вентилятор при этом всё равно не заденут.

Комплектующие упакованы в отдельную картонную коробочку, размещённую над кулером. В набор входят универсальная усилительная пластина на обратную сторону материнской платы, две пары направляющих для процессоров Intel и AMD, краткая инструкция по установке, комплект винтов, втулок и шайб, термопаста с теплопроводностью 7,5 Вт/м·К, а также маленький кабель с пультом для подключения подсветки вентилятора к разъёму блока питания PATA-типа.

PCCooler GI-D56V HALO RGB – намного более доступный кулер, чем GI-D66A HALO RGB (3,8 тыс. руб.), поскольку его можно приобрести за две с небольшим тысячи рублей. Гарантия – 1 год, страна производства – Китай.

⇡#Особенности конструкции

PCCooler GI-D56V HALO RGB – кулер башенной конструкции с алюминиевым радиатором на тепловых трубках и одним 120-мм вентилятором. Можно сказать, что это классическая «башня» со всеми её преимуществами и недостатками, но, конечно же, и со своими нюансами. Выглядит новинка довольно привлекательно благодаря интересному внешне радиатору и симпатичному вентилятору.

Главный параметр кулера при установке — высота — здесь составляет 150 мм, то есть PCCooler GI-D56V HALO RGB будет совместим с подавляющим большинством обычных ATX-корпусов. Добавим, что его ширина с учётом клипс вентилятора равна 134 мм, а толщина – 80 мм. Кулер лёгкий – всего 598 граммов, из которых 455 граммов весит радиатор.

В отличие от флагманской модели PCCooler, здесь нет никаких пластиковых кожухов, а боковые стороны пластин радиатора ничем не закрыты.

Сверху на радиаторе установлена пластиковая декоративная пластина с логотипом компании-производителя. Может, она и улучшает внешний вид кулера (хотя, это тоже спорный момент), но на теплообмене радиатора сказывается не лучшим образом.

На основании кулера отметим защитную плёнку с предупреждением об обязательном её удалении перед установкой.

Рёбра радиатора в количестве 40 штук напрессованы на тепловые трубки с межрёберным расстоянием 2,0 мм. Толщина алюминиевых пластин составляет 0,4 мм, а их торцы имеют переменную высоту для снижения сопротивления воздушному потоку вентилятора.

Очень похожее решение мы видели ранее в других кулерах, например в Scythe Kotetsu. Расчётная площадь радиатора составляет 5340 см 2 , что для воздушного кулера среднего ценового диапазона является вполне типичным значением.

Интересно в PCCooler разместили в радиаторе тепловые трубки. Всего в основании радиатора их можно насчитать пять, каждая диаметром 6 мм, однако пластины радиатора пронизывают только по четыре тепловые трубки с каждой стороны.

Всё дело в том, что в радиаторе применены три длинные тепловые трубки и две короткие, которые выходят из основания в разные стороны. В результате получилось, что трубок как бы пять, но на пластины радиатора тепловой поток одновременно распределяют только четыре из них с каждой стороны.

В основании радиатора тепловые трубки вставлены в алюминиевую болванку с 1,5-мм зазором друг от друга.

Не лучший вариант для равномерного теплообмена с процессором, хотя и наиболее часто встречающийся среди прямоконтактных кулеров данного ценового класса. Основание обработано на троечку, но без претензий в плане ровности.

Читать еще:  Как отрегулировать фурнитуру пластикового окна maco

Кулер оснащается одним 120-мм вентилятором VortexPro RGB с девятилопастной крыльчаткой диаметром 104 мм и 41-мм статором.

Здесь мы видим те же самые лопасти с насечками на внутренней поверхности, предназначенные для повышения статического давления, которое, кстати, в характеристиках вентилятора не указано.

Скорость вентилятора регулируется широтно-импульсной модуляцией (ШИМ) и может изменяться в диапазоне от 1000 до 2000 об/мин с допуском 10 %. Максимальный воздушный поток может достигать 72 CFM, а уровень шума лежит в диапазоне от 8 до 29,1 дБА.

Если судить по наклейке на статоре, вентилятор может потреблять до 3,36 Вт, хотя, по результатам наших измерений, он уложился в 3 Вт.

Стартовое напряжение оказалось равно 2,8 В. Заявленный срок службы гидродинамического подшипника вентилятора – 30 тысяч часов, или три с половиной года непрерывной работы.

Для снижения передачи вибраций от вентилятора на радиатор и уменьшения уровня шума по углам его рамки приклеены мягкие силиконовые накладки.

Что интересно, закрепляется вентилятор на радиаторе обычными проволочными скобками, хотя в самом радиаторе есть отверстия под силиконовые иглы, при использовании которых вентилятор вообще бы не контактировал с радиатором. Добавим, что скоб в комплекте всего две, поэтому для установки второго вентилятора придётся что-то придумывать самостоятельно.

⇡#Совместимость и установка

Параметры совместимости PCCooler GI-D56V HALO RGB и процедура установки такие же, как у кулера PCCooler GI-D66A HALO RGB, а из отличий выделим только более удобный доступ к прижимным винтам, для затягивания которых можно использовать крестовую отвёртку, а не маленький ключик.

Расстояние до радиатора составляет 44 мм, а до вентилятора – 33 мм, но последний можно повесить и повыше, если он вдруг будет конфликтовать с чем-то высоким в околосокетном пространстве.

Внутри корпуса системного блока кулер выглядит аккуратно и сравнительно компактно.

Соединив отдельный кабель подсветки вентилятора с разъёмом на материнской плате, можно синхронизировать цвет и режим работы подсветки, настроив его через соответствующее приложение плат ASUS, Gigabyte, MSI или ASRock.

Кроме того, подсветкой можно управлять и отдельно, через компактный пульт на кабеле, но для этого каждый раз придётся открывать системный блок.

Технологии управления скоростью вращения вентиляторов

авно уже прошли те времена, когда в компьютерах использовалось пассивное охлаждение — такие компьютеры были абсолютно бесшумными, но малопроизводительными. По мере роста производительности процессоров и других компонентов ПК росло и их энергопотребление и, как следствие, компоненты ПК становились все более «горячими». Поэтому процессоры стали оснащать массивными радиаторами, а вскоре к ним добавились и вентиляторы, то есть пассивное охлаждение процессоров уже не могло обеспечить требуемый теплоотвод для поддержания надлежащей температуры, из-за чего стали использовать воздушное охлаждение. По мере роста тактовых частот процессоров увеличивалась эффективность теплоотвода, что достигалось за счет более массивных радиаторов и более быстрых вентиляторов.

Повышение максимальной скорости вращения вентиляторов влекло за собой рост уровня создаваемого ими шума. Известно, что при увеличении скорости вращения вентилятора от значения N1 до N2 уровень создаваемого им шума возрастает от значения NL1 до NL2, причем:

,

Предположим, требуется увеличить скорость вращения вентилятора на 10%. При этом на 2 дБ увеличится и уровень шума, создаваемого вентилятором. Зависимость изменения уровня шума вентилятора от нормализованной скорости вращения показана на рис. 1.

Рис. 1. Зависимость изменения уровня шума (DNL) вентилятора от нормализованной скорости вращения (N2/N1)

Не менее остро, чем проблема охлаждения процессоров, стоит проблема снижения уровня шума. Идеи, заложенные в технологии энергосбережения и снижения тепловыделения, можно использовать и для снижения уровня шума систем охлаждения. Поскольку тепловыделение (и, следовательно, температура) процессора зависит от его загрузки, а при использовании технологий энергосбережения — и от его текущей тактовой частоты и напряжения питания, в периоды слабой активности процессор остывает. Соответственно нет необходимости постоянно охлаждать процессор с одинаковой интенсивностью, то есть интенсивность воздушного охлаждения, определяемая скоростью вращения вентилятора кулера процессора, должна зависеть от текущей температуры процессора.

Существует два основных способа динамического управления скоростью вращения вентиляторов, реализуемых на современных материнских платах: управление по постоянному току и управление с использованием широтно-импульсной модуляции напряжения.

Управление по постоянному току

ри технологии управления по постоянному току (Direct Current, DC) меняется уровень постоянного напряжения, подаваемого на электромотор вентилятора. Диапазон изменения напряжения составляет от 6 до 12 В и зависит от конкретной материнской платы. Данная схема управления скоростью вращения вентилятора довольно проста: контроллер на материнской плате, анализируя текущее значение температуры процессора (через встроенный в процессор термодатчик), выставляет нужное значение напряжения питания вентилятора. До определенного значения температуры процессора напряжение питания минимально, и потому вентилятор вращается на минимальных оборотах и создает минимальный уровень шума. Как только температура процессора достигает некоторого порогового значения, напряжение питания вентилятора начинает динамически меняться, вплоть до максимального значения в зависимости от температуры. Соответственно меняются скорость вращения вентилятора и уровень создаваемого шума (рис. 2).

Рис. 2. Реализация динамического управления скоростью вращения вентилятора кулера процессора при изменении напряжения питания

Рис. 2. Реализация динамического управления скоростью вращения вентилятора кулера процессора при изменении напряжения питания

Рассмотренная технология реализована на всех современных материнских платах — как процессоров Intel, так и процессоров AMD. Для ее реализации необходимо установить соответствующую схему управления в BIOS материнской платы и использовать трехконтактный вентилятор (отметим, что большинство процессорных кулеров являются именно трехконтактными): два контакта — это напряжение питания вентилятора, а третий контакт — сигнал тахометра, формируемый самим вентилятором и необходимый для определения текущей скорости вращения вентилятора. Сигнал тахометра представляет собой прямоугольные импульсы напряжения, причем за один оборот вентилятора формируется два импульса напряжения. Зная частоту следования импульсов тахометра, можно определить скорость вращения вентилятора. Например, если частота импульсов тахометра равна 100 Гц (100 импульсов в секунду), то скорость вращения вентилятора составляет 50 об./с, или 3000 об./мин.

Управление с использованием широтно-импульсной модуляции напряжения

льтернативной технологией динамического управления скоростью вращения вентилятора кулера процессора является широтно-импульсная модуляция (Pulse Wide Modulation, PWM) напряжения питания вентилятора. Идея здесь тоже проста: вместо изменения амплитуды напряжения питания вентилятора напряжение подают на вентилятор импульсами определенной длительности. Амплитуда импульсов напряжения и частота их следования неизменны, и меняется только их длительность, то есть фактически вентилятор периодически включают и выключают. Подобрав частоту следования импульсов и их длительность, можно управлять скоростью вращения вентилятора. Действительно, поскольку вентилятор обладает определенной инертностью, он не может мгновенно ни раскрутиться, ни остановиться (рис. 3).

Рис. 3. Реакция вентилятора

Рис. 3. Реакция вентилятора на импульс напряжения

Если длительность импульса напряжения (Ton) меньше характерного времени раскрутки вентилятора (Ton < Tраскр), а длительность промежутка времени, в течение которого на вентилятор не подается напряжение (Toff), меньше характерного времени останова вентилятора (Toff < Tост), то при подаче на вентилятор последовательности таких импульсов он будет вращаться с некоторой средней скоростью, значение которой определяется соотношением времен Ton и Toff (рис. 4).

Рис. 4. Управление скоростью вращения вентилятора при широтно-импульсной модуляции напряжения

Рис. 4. Управление скоростью вращения вентилятора при широтно-импульсной модуляции напряжения

Отношение времени Ton к периоду следования импульсов (Ton + Toff), измеряемой в процентах, то есть

.

называется скважностью импульсов. Если, к примеру, скважность составляет 30%, то время, в течение которого на вентилятор подается напряжение, составляет 30% от периода импульса.

Реализации широтно-импульсной модуляции напряжения вентилятора осуществляется с помощью PWM-контроллера на материнской плате, причем данный тип управления поддерживается только материнскими платами для процессоров Intel.

PWM-контроллер, в зависимости от текущей температуры процессора, формирует последовательность импульсов напряжения с определенной скважностью, однако это — еще не импульсы напряжения, которые подаются на электродвигатель вентилятора. Последовательность импульсов, формируемая PWM-контроллером, используется для управления электронным ключом (транзистором), отвечающим за подачу напряжения (12 В) на электродвигатель. Упрощенная схема управления скоростью вращения кулера показана на рис. 5.

Рис. 5. Схема управления скоростью вращения вентилятора

Рис. 5. Схема управления скоростью вращения вентилятора
при использовании PWM-сигнала

Кулеры, поддерживающие PWM-управление, должны быть четырехконтактными: два контакта необходимы для подачи напряжения 12 В, третий контакт — это сигнал тахометра, формируемый самим вентилятором и необходимый для определения текущей скорости вращения, а четвертый контакт используется для связи с PWM-контроллером.

Как уже говорилось, при широтно-импульсной модуляции напряжения для изменения скорости вращения вентилятора меняется скважность импульсов, но не частота их следования. Типичная минимально возможная скважность импульсов составляет 30%, а максимально возможная — 100%, что соответствует постоянному напряжению на вентиляторе. Частота следования PWM-импульсов составляет от 21 до 25 кГц (типичное значение 23 кГц), то есть в течение одной секунды вентилятор включается и отключается приблизительно 23 тыс. раз! На рис. 6 показан пример осциллограммы PWM-импульсов с частотой следования 25 кГц и скважностью 78%.

Рис. 6. Осциллограмма PWM-последовательности со скважностью 78% при частоте следования 25 кГц

Рис. 6. Осциллограмма PWM-последовательности со скважностью 78% при частоте следования 25 кГц

Скважность PWM-импульсов определяется текущей температурой процессора. Если температура процессора ниже некоторого порогового значения, то скважность импульсов минимальна — следовательно, вентилятор будет вращаться на минимальной скорости и создавать минимальный уровень шума. При превышении температуры процессора порогового значения скважность импульсов начинает линейно меняться в зависимости от температуры, увеличиваясь вплоть до 100%. Соответственно и скорость вращения вентилятора, равно как и уровень создаваемого им шума, будет изменяться в зависимости от температуры процессора (рис. 7).

Рис. 7. Зависимость скважности PWM-импульсов

Рис. 7. Зависимость скважности PWM-импульсов
от температуры процессора

В заключение отметим, что, как и в случае с DC-технологией, для реализации PWM-управления скоростью вращения кулера необходимо активировать данный режим управления в BIOS материнской платы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector