Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка хода часов. Влияние температуры воздуха

Регулировка хода часов. Влияние температуры воздуха

Период колебании часового осциллятора обусловлен прежде всего его размерами. Если продолжительность колебания маятника не зависит от его веса, то для баланса продолжительность колебания в существенной степени зависит от материала, причем не только баланса, но и волоска.

Величина полупериода (продолжительность полуколебания) маятника определяется его длиной по формуле:

где T – полупериод (продолжительность полуколебания) маятника;

lr – приведенная длина маятника;

g – ускорение силы тяжести.

Расчетом можно установить, что приведенная длина секундного маятника для нашей географической широты равна 99,4 см, а полусекундного – 24,9 см.

Период полуколебания баланса обусловлен его размерами и вращающим моментом волоска. Для точного регулирования хода служит так называемый градусник, регулировочная стрелка которого закреплена подвижно на мосту баланса. Ее хвостовик с замком, охватывающим волосок на его последнем внешнем витке вблизи колодки, при повороте стрелки изменяет рабочую длину, а с ней и вращающий момент волоска. В большинстве случаев смещение регулировочной стрелки на одно деление шкалы изменяет суточный ход часов примерно на 2 мин. У старых пружинных часов с балансовым осциллятором без волоска ход регулировался только изменением силы приводной пружины. Для этого на крышке барабана пружины был специальный храповик с защелкой. У часов с балансом фолио его амплитуда задавалась щетинными упорами, закрепленными на неподвижной и регулируемой консолях. Карманные часы XVIII в. со шпиндельным спуском имели специфический так называемый регулятор Томпиона, который, как и градусник с регулировочной стрелкой, изменял рабочую длину волоска.

Количество полуколебаний баланса различается в зависимости от типа часов, их величины и исполнения. Нижний предел этого количества начинается с трех полуколебаний в секунду у больших часов, например у будильников. Морские хронометры с четырьмя полуколебаниями в секунду также относятся к группе часов с низкой частотой осциллятора. Продолжительность колебания карманных часов около 1/5 с, а наручных – колеблется в пределах от 1/5 до 1/6 с*.

* В последнее время с целью повышения точности часов стали применять более высокочастотные балансы с периодом полуколебаний до 0,1 с. (Прим. науч. ред.)

Венцы балансов некоторых карманных и наручных часов имеют на окружности маленькие регулировочные винтики. Изменением их положения на венце выравнивается ход часов, прежде всего различия в частоте при горизонтальном и вертикальном положении баланса, вызываемые изменением трения цапф.

О некоторых причинах различной длительности полуколебаний мы уже упоминали при описании спусковых механизмов. Наряду с колебаниями ведущей силы, чувствительными прежде всего у точных часов, и различными побочными явлениями, вызываемыми изменениями смазочных свойств стареющего масла и т.п., на ход часов влияет и изменение температуры и давления воздуха. При изменении температуры вещества изменяют свой объем, причем изменяются их механические свойства, что особенно важно для подвесных пружин маятника и волосков. О том, что в часовом деле нельзя пренебрегать тепловым расширением, свидетельствует то обстоятельство, что однопроцентное изменение в длине маятника изменяет суточный ход часов на целые 432 с.

Сравнительно хорошие результаты давали в этом отношении маятники из высохшей еловой древесины, температурная погрешность которых колебалась в пределах 1/5 с в день на 1°C. Для астрономических измерений такая степень точности, само собой разумеется, недостаточна, поэтому пришли к идее создания компенсационных элементов. Принцип всех температурных компенсаторов маятников заключался в сохранении постоянства расстояния между центром тяжести и точкой подвески маятника. В 1720 г. эту проблему вполне успешно решил Грагам с помощью ртути, заполняющей частично пространство линзы маятника. Температурная погрешность его маятника упала до 0,001 с/сутки на 1°C.

Большой интерес у часовщиков вызвали биметаллические решетчатые маятники, составленные из двух систем стальных и латунных стержней. Одна система была жестко соединена с подвеской маятника, а другая – с его линзой. При выборе размеров необходимо было учитывать различные коэффициенты температурного расширения обоих металлов так, чтобы и при большом изменении температур длина маятника от точки подвеса до центра линзы оставалась неизменной. Интересно решенные решетчатые маятники создали Гаррисон, Юргенсен, Берту, Леруа, Депарсье, Троугтон и многие другие (некоторые их конструкции показаны на рис. 30).

Рис. 30. Маятник с биметаллической компенсацией температурной погрешности

Первым чешским часовщиком, производившим температурно-компенсированные маятники собственной конструкции, был опять-таки Йозеф Коссек, которым были созданы некоторые весьма интересные конструкции ртутных и биметаллических компенсаторов. И известная пражская мастерская Вилленбахера и Ржебичека, основанная в первой половине прошлого века, конструировала собственные типы биметаллических маятников.

Шарль Эдуард Гильом (1861. 1938) исследовал свойства ферроникелевых сплавов и нашел сплав с содержанием 36% никеля, известный под названием «инвар» (от французского слова invariable), не только стойкий к коррозии, но и обладающий самым малым коэффициентом температурного расширения. В 1897 г. Тюри использовал инвар Шарля Эдуарда Гильома для создания маятников, а через три года стал монтировать инварные маятники у своих часов для астрономических измерений времени мюнхенец Рифлер. С того времени происходят и первые кварцевые маятники венского конструктора точных часов Карла Сатори, стабильность длины которых была еще на 60% больше, чем у инварных.

Точность маятниковых часов на астрономических обсерваториях зависела также от влияний восходящих потоков воздуха и при изменениях барометрического давления. Возникающая при этом барометрическая погрешность устранялась либо тем, что часовой механизм помещали в пространстве с частичным вакуумом (это одновременно ограничило влияние воздействия указанных сил), либо с помощью анероидного компенсатора – манометрической коробки с компенсаторным грузом, закрепленным на маятнике.

Балансовый осциллятор более чувствителен к воздействиям температуры, чем маятник.

Барометрическая погрешность баланса достигает около 0,2 с в сутки при изменении давления воздуха примерно на 0,01 Па. Изменение температуры на 1°C у обычных часов с латунным балансом и бронзовым волоском вызывает суточное изменение хода часов по меньшей мере на 10 с.

Неблагоприятные влияния изменений температуры на ход балансовых осцилляторов учитывали уже старые часовщики, которые изыскивали способ борьбы с этим влиянием.

Рис. 31. Изменение формы баланса с биметаллическим ободом:
а – при повышенной температуре, б – при средней температуре, в – при пониженной температуре

Биметаллическая система, широко применяемая для маятников, нашла большое применение и для балансов, главным образом в виде биметаллических балансов с ободом, изготовленным из сварных стальных и латунных лент (рис. 31). У часов с обычным, некомпенсированным по температурам балансом увеличивался при повышении температуры момент инерции баланса, и часы тогда начинали отставать. Однако у биметаллического баланса под влиянием различной степени расширения стали и латуни обод прогибается в месте шва свободными концами вовнутрь, диаметр баланса уменьшается, ход часов ускоряется, в силу чего температурная погрешность компенсируется. При понижении температуры происходит противоположный процесс. Такой баланс мог удовлетворительно исправлять температурную погрешность всего осциллятора, а потому присоединенный к нему волосок не компенсировался. Известны различные виды компенсационных балансов для морских хронометров – биметаллический баланс Ирншау, построенный им в 1790 г., и баланс Шарля Эдуарда Гильома, изготовленный из латуни и ферроникеля и др.

Читать еще:  Как регулировать напряжение на юсб

В 1775 г. Берту открыл так называемую вторичную ошибку, оставшуюся у компенсационных балансов и проявляющуюся в суточном изменении хода часов в пределах от 2 до 5 с. Причиной этого был нелинейный характер расширения материалов баланса с изменением температуры. Берту установил, что биметаллический компенсационный баланс может точно устранить влияние температурного расширения лишь при двух определенных температурах, тогда как в диапазоне между ними возникает именно эта вторичная погрешность.

Закаленные стальные волоски, впервые изготовленные Жаном Целанисом Лутцом в 1847 г., которые раньше использовались для биметаллических балансов, страдали рядом недостатков. Они корродировали, и на них влиял земной магнетизм. Достоинствами же их были сравнительно малое внутреннее трение и малый расход энергии на упругую деформацию.

Шарль Огюст Пейлар (1840. 1895) изобрел в 1877 г. в качестве побочного продукта при производстве платины неокисляющийся немагнитный сплав палладия с температурой плавления 1550°C. В то же время англичане производили эксперименты с волосками из стекла и золота. Изобретение Пейлара имело бесспорно большое значение для внедрения новых материалов в часовое производство, но это изобретение затмили дальнейшие изобретения Гильома, касающиеся ферроникелевых сплавов. Целью экспериментов Гильома было создание биметаллического баланса без вторичной погрешности. Ферроникелевый сплав, подходящий для такого баланса, содержал 42% никеля. В 1897 г. Поль Перре изготовил из этого сплава волосок, который имел намного меньшие изменения упругости в зависимости от температуры, чем сталь. После многих лет дальнейших экспериментов был создан, наконец, в 1913 г. опять-таки благодаря Шарлю Эдуарду Гильому новый температурно-стабильный материал элинвар (название произошло от сокращенных слов elasticite invariable) с содержанием хрома от 10 до 12%. Этот ферроникелевый сплав хотя и имел постоянный модуль упругости, но слишком сильно снижал амплитуду колебаний баланса и был очень чувствителен к магнитному полю. Другими его недостатками были мягкость и легкая деформируемость.

Несмотря на это, все же такая передача функций температурной компенсации с баланса на волосок привилась, так что в нынешнем часовом производстве применение компенсационных волосков – обычное дело. Исключением являются хронометры, где до сих пор сохранился биметаллический баланс с цилиндрическим стальным волоском. Нынешние наручные часы имеют компенсационные волоски из специальных ферроникелевых сплавов, известных под торговыми названиями «ниварокс», «изовал» и т.п., и гладкий монометаллический баланс, которые не участвуют в компенсации температурных влияний.

В историческом обзоре развития многих сплавов следует упомянуть эксперименты М.Р. Штрауманна из Вальденбурга, который использовал для баланса температурную анизотропию (различную степень растяжимости материала в разных направлениях) цинковых сплавов, достигаемую их надлежащей обработкой. Этими новыми материалами удалось еще более понизить температурную погрешность часов.

Балансовый осциллятор является весьма сложным устройством. Наряду с температурой и барометрическим давлением на стабильность его полуколебаний воздействует еще ряд других факторов, среди которых есть и неизохронная погрешность, возникающая при непостоянстве амплитуды баланса. Укажем для полноты изложения хотя бы на главные источники неизохронной погрешности, вызываемой нестабильностью амплитуды. Наряду с переменным импульсом спускового механизма это бывают колебания упругости волоска, влияние формы его крепления на концах, изменение зазора в замке регулировочной стрелки, градусника, изменение положения центра тяжести волоска и др.

Исследуя детальнее форму плоских волосков, мы должны обратить внимание в некоторых случаях на особую форму их концевой кривой. Волосок с особой формой закругления носит наименование волоска с кривой Бреге по имени самого создателя. Это, по существу, обычный плоский волосок, последний внешний виток которого несколько приподнят над остальными витками и сформирован в особую кривую, компенсирующую вредное переменное влияние крепления волоска в колодке и на мостике баланса.

Точная регулировка хода переносных часов и при хороших регуляторах с компенсационными элементами является весьма трудным делом, поскольку при изменении положения баланс, осциллятор и часовой механизм непрерывно подвергаются изменяющимся влияниям, например влиянию силы тяжести баланса и волоска или различного трения цапф в опорах при горизонтальном и вертикальном положениях механизма. Чтобы устранить неправильности хода, вызываемые положениями механизма, Бреге создал специальное устройство «турбиллион». Принцип его работы состоял в размещении спуска с осциллятором в особой клетке, которая постоянно вращалась вокруг вала секундного колеса со скоростью одного оборота в минуту. Этим способом Бреге исключил влияние силы тяжести баланса и волоска при изменении положения часов. Производство турбиллионов достигло высокого уровня в Швейцарии. Известны турбиллионы Фредерика-Луи Фавре-Булле (1770. 1849), Эрнеста Гвинарда (1879) и, наконец, одного из главных позднейших производителей этих приборов Альберта Пеллатона-Фавре (1832. 1914) и его сына Джеймса.

В 1894 г. Бэйн Бонниксен из Ковентри изобрел другой вариант турбиллиона – карусель, которая отличалась от турбиллиона Бреге главным образом скоростью вращения клети. Первоначально клеть со спуском в каруселях Бонниксена вращалась вокруг вала секундного колеса один раз в 52,5 мин, но у новейших типов время оборота сократилось до 39 мин.

Гиревые часы с маятниковым регулятором

Принцип работы гиревых часов с маятниковым регулятором.

В часах маятник применяется в качестве регулятора хода часов. Маятником называется тело, ось вращения которого не проходит через его центр тяжести. Маятник совершает под действием силы тяжести колебательные движения, если вывести его из положения равновесия и отпустить. Время, необходимое для перехода маятника из одного крайнего положения в другое возвращения обратно, называется периодом колебания маятника . Изменяя величину и расположение массы тела маятника, можно точно отрегулировать величину периода Т. Обычно источником энергии для маятниковых часов служит опускание гири. Поднимая гирю вверх, увеличивают ее потенциальную энергию пропорционально высоте подъема. При опускании гири эта энергия расходуется на то, чтобы приводить в движение механизм часов вместе с маятником и преодолевать возникающее при этом трение. Гиря могла бы опуститься почти мгновенно, вращая с большой скоростью колесную систему, но этому препятствует механизм спуска — скобка с вилкой, удерживающей то правым, то левым плечом ходовое колесо, а вместе с ним и всю колесную систему от проворачивания.

Читать еще:  Регулировка браслета часов michael kors

Скобка через вилку находится во взаимодействии с маятником, колебания которого заставляют скобку периодически поворачиваться и пропускать один зуб ходового колеса. Давление зуба на скобу передается маятнику в виде импульса энергии (толчка), достаточного для поддержания колебательного движения маятника. При каждом повороте ходового колеса на небольшой угол (на один зуб) гиря немного опускается. Благодаря постоянству периода колебания маятника гиря опускается в одинаковые промежутки времени на одинаковые отрезки пути. Отсчет времени в таких часах можно было бы производить по длине пути спускающейся гири, но удобнее отсчитывать время по стрелке, вращающейся с барабаном, с которого разматывается нить (или цепь) под действием силы тяжести гири.

Если маятник сделает 30 колебаний в минуту, то скобка пропустит за это время 30 зубьев ходового колеса. При этом стрелка повернется на какой-то строго определенный угол, гиря опустится на точно определенное расстояние. Таким образом, простейшие гиревые часы с маятниковым регулятором являются прибором времени, основанным на автоматическом поддержании колебания маятника с постоянным (в первом приближении) периодом. Потенциальная энергия поднятой гири расходуется на поддержание колебания маятника, на работу счетчика числа колебаний — стрелочного механизма (у которого угол поворота стрелок прямо пропорционален времени), на преодоление инерционных сил и сил трения в механизме. Основной недостаток часов с маятниковым регулятором — большая чувствительность их к изменению положения. Если незначительно сдвинуть такие часы с отвесного положения, то нарушится равномерность их хода или часы совсем остановятся. Гири тоже не могут быть использованы в качестве двигателя часового механизма переносного типа. Поэтому гиревые часы с маятником могут применяться лишь как стационарные настенные, напольные, башенные и др.

Маятниковые часы

Первые механические часы, изобретенные китайцами, приводились в действие огромными, медленно поворачивавшимися деревянными водяными колесами. В 1300-х гг. появились колесные часы с приводом от опускавшихся гирь, но эти часы были ненадежными и неточными. Часам требовался механизм регулирования хода, который изобрели в 1600-х гг. Таким механизмом стал мятник, который нашел в часах первое практическое применение.

В 1582 г. итальянский ученый Галилео Галилей продемонстрировал, что маятник — груз, подвешенный на тонком стержне, — всегда качается с постоянной скоростью. Кроме того, он доказал, что скорость колебаний зависит только от длины маятника, а не от величины груза, прикрепленного к его концу. Например, маятник длиной 1 м совершает одно колебание (туда и обратно) за 1 сек. Но если маятник такой длины продолжает качаться, значит, с его помощью можно измерять время в секундах. У Галилея возникла эта идея, и в 1641 г. — за год до смерти — он рассказал своему сыну Винченцо, как сделать часы, ход которых регулируется маятником. Но Винченцо не успел закончить работу; первые маятниковые часы появились лишь в 1657 г. Их спроектировал голландский ученый Христиан Гюйгенс, а изготовил часовщик Соломон Костер в Гааге. Они отставали или убегали на 5 секунд в сутки, что значительно превышало точность всех тогдашних часов.

В часовых маятниках использовались не нити, а металлические стержни. Но на металл влияет температура, поэтому длина стержней менялась, что отражалось на точности хода часов. В жаркую погоду металлический стержень удлинялся, а в холодную укорачивался. Например, часам с односекундным маятником для потери одной секунды в сутки достаточно увеличения длины маятника на 0,025 мм, что происходит при повышении температуры всего на 2 «С. Изобретатели вскоре решили эту проблему, создав маятник постоянной длины. В 1722 г. английский механик Джордж Грэм изобрел ртутный маятник (о чем заявил в 1726 г.), прикрепив к концу маятника стеклянный сосуд со ртутью. Когда из-за повышения температуры маятник удлинялся вниз, это компенсировалось расширением ртути в сосуде, действовавшим в обратном направлении.

Другим решением стал решетчатый маятник из перемежающихся полос стали и меди, изобретенный английским часовщиком Джоном Гаррисоиом в 1728 г. Медь расширяется сильнее, чем сталь, поэтому ее расширение компенсировалось меньшим расширением стали. Сейчас стержни маятников изготавливаются из инвара — сплава железа с никелем, который почти не расширяется при нагревании. Этот сплав также используют для изготовления рулеток и камертонов, для которых постоянная длина очень важна.

Ученик Галилея итальянский ученый Винченцо Вивиани сделал этот набросок маятниковых часов; реконструкцию маятника см. на рис. на с. 13.

Эта модель маятниковых часов была создана в XIX в. по наброску проекта Галилея, сделанному Вивиани. Источник энергии для часов там указан не был, поэтому можно предположить, что они приводились в движение опускающимися гирями.

В механических часах скорость, с которой высвобождается энергия опускающегося груза, регулируется с помощью механизма, называемого спуском. Молоточек, подвешенный на маятнике, заставляет качаться анкер. Анкер то останавливает, то отпускает анкерное колесо, позволяя ему постепенно освобождать энергию опускающегося груза, приводящую в движение главное колесо. К оси главного колеса прикреплена часовая стрелка.

Функциональные элементы механических часов

Любой часовой механизм можно разделить на четыре основные функциональные группы, а именно: приводной и передаточный механизм, спусковой механизм, осциллятор и индикаторная часть. Источник энергии привода у механических часов обычно бывает встроен в сам механизм часов и является его составной частью, например барабаны с гирями или же пружинный механизм с пружиной.

Требуемое количество энергии отмеривается в механических часах специальным устройством, так называемым спусковым механизмом или спуском, являющимся соединительным элементом между механизмом часов и осциллятором. Этот механизм постоянно соединен с передаточным механизмом часов, от которого он получает энергию привода. С осциллятором, который в современных часах имеет форму маятника или баланса, спуск взаимодействует лишь в определенные моменты, выполняя свою основную задачу, весьма важную для обеспечения хода часов, – разделение постоянной энергии привода на отдельные силовые импульсы, поддерживающие колебания осциллятора. Другой задачей спускового механизма является суммирование колебаний осциллятора. Если предположить, что осциллятор колеблется с постоянной частотой, то спуск работает одновременно в качестве устройства, суммирующего постоянные интервалы времени – полупериоды этих колебаний. Постоянство частоты осциллятора является главной предпосылкой точности хода часов. Если эта частота постоянна, то колебания осциллятора изохронны.

В дальнейшем изложении вопроса о спусковых механизмах мы часто будем употреблять понятия «полуколебание» и «колебание». Под «полуколебанием» осциллятора мы будем здесь понимать его движение в течение полупериода колебаний из одного положения равновесия в другое, а под «колебанием» – два следующих друг за другом «полуколебания». Продолжительность колебания называется его периодом. Под амплитудой мы будем понимать максимальное угловое отклонение осциллятора от его положения равновесия при колебаниях.

Читать еще:  Краны с регулировкой температуры на радиаторы отопления

Осциллятор выполняет прежде всего роль генератора изохронных колебаний, но он регулирует и последовательность во времени силовых импульсов спуска, а этим, в свою очередь, регулируется ход всего часового механизма вместе с его индикаторным механизмом.

В течение столетий индикаторным механизмом был стрелочный индикатор с циферблатом, который имел классический вид неподвижного циферблата с одной, двумя или несколькими вращающимися стрелками, или же с неподвижной стрелкой и с одним или несколькими вращающимися цилиндрическими шаровидными или плоскими циферблатами.

В последнее время снова стала преобладать цифровая индикация, ставшая известной уже в конце XIX и начале XX в. и способствовавшая тогда усилению сбыта коммерческих часовых приборов.

Спусковой механизм и осциллятор образуют регулятор, который определяет точность хода механических часов. Исследуя механизм старых часов, мы встречаемся с огромным количеством конструктивных вариантов, с сотнями успешных и менее удачных спусковых механизмов и с различными формами осцилляторов – от простых маховиков через остроумно решенные сложные маятники и до современных самокомпенсирующихся балансов.

На первый взгляд представляется, что конструкция спускового механизма зависела от индивидуальных представлений и что между отдельными типами спусков нет общих признаков, по которым их можно было бы подразделить на группы. Однако общие признаки существуют, и по ним можно оценивать принцип и функцию спусковых механизмов с нескольких точек зрения. В целях наглядности мы будем рассматривать только те спусковые механизмы, которые чаще всего использовались в старых механизмах часов и имели наиболее важное значение для развития таких часов.

Объясним работу спускового механизма часов на примере наиболее известного и оправдавшего себя анкерного спуска (рис. 1).

Рис. 1. Спусковой механизм современных механических часов.

Главными частями такого спуска является анкер 2 с рабочими изогнутыми штифтами, так называемыми палетами 1, и зубчатое спусковое колесо. Палеты анкера охватывают определенное количество зубьев спускового колеса и поочередно заходят в эти зубья. В положении, показанном на рис. 8, зуб спускового колеса подошел к левой палете и опирается на боковую поверхность, так называемую поверхность покоя. Маятник соединен вилкой с анкером, и здесь он находится в амплитудном положении и начинает опускаться в положение равновесия. Если при этом движении анкер повернется на определенный угол обхвата α, то зуб спускового колеса упрется в наклонную, так называемую импульсную, плоскость палеты, и при дальнейшем движении по этой плоскости он поднимет левое плечо анкера и при этом придаст анкеру и маятнику силовой импульс.

Длина этого импульса выражена углом импульса β. После окончания импульса палета 1 освободит зуб спускового колеса, спусковое колесо скачкообразно повернется, пока соответствующий зуб спускового колеса 2 не натолкнется на поверхность покоя второй палеты 3. Затем маятник легко перейдет на свою точку левого поворота и снова возвратится, пока зуб 2 перейдет с поверхности покоя на наклонную плоскость импульса правой палеты, а анкер получит импульс в обратном направлении. Этот процесс циклически повторяется. Анкерный механизм работает с двусторонним импульсом. Спусковое колесо при каждом полуобороте поворачивается на половину шага зубьев. Короткий скачок спускового колеса, сопровождаемый известным характерным тиканьем часов, правда, связан с некоторой потерей энергии, но он необходим для придания импульса анкеру и осциллятору.

Внимательное наблюдение за поведением спускового колеса приведет нас к первому критерию классификации спусков. У старых спусковых систем мы часто встречаемся с таким явлением, что анкер при завершении полуколебания осциллятора отжимает назад спусковое колесо и вынуждает его совершить небольшое, едва заметное возвратное движение. У современных же спусков спусковое колесо, наоборот, остается в покое. В зависимости от поведения спускового колеса можно, следовательно, распределить спуски на спуски с отходом назад и спуски без отхода.

У обычных маятниковых или балансовых часов, приводимых соответственно гирей или пружиной, величина момента импульса, а с ней и продолжительность полуколебания зависит от момента привода, величина которого под влиянием переменных сопротивлений, изменяющегося момента привода пружины и т.п. может изменяться настолько, что это будет значительно влиять на ход часов. В отношении более точных часов, к которым принадлежат некоторые виды хронометров, этот недостаток был устранен введением дополнительного элемента в виде гири или пружины между спусковым колесом и анкером, придающим осциллятору импульсы одинаковой величины. У спусковых механизмов, у которых нет этого элемента, осциллятор получает переменные импульсы. Оценивая спусковые механизмы с точки зрения постоянства импульсной силы, мы придем к следующему критерию, подразделяющему спусковые механизмы на механизмы с переменной силой и механизмы с постоянной импульсной силой.

Третий, весьма важный аспект касается прочности связи между спусковым механизмом и осциллятором. Что здесь понимается под прочностью связи? Рассматривая соединение маятниковой штанги обычных часов с анкером спускового механизма, мы увидим, что вилка, которая обычно жестко соединена с валом анкера, принуждает маятник к согласованному движению с анкером. Связь между спусковым механизмом и осциллятором здесь поддерживается на протяжении всех колебаний, вследствие чего все нестабильности передачи силы привода полиостью переносятся на осциллятор и сильно нарушают равномерность его колебаний. Такие спусковые механизмы называют несвободными, и у таких часов трудно добиться большой точности хода.

Современные же спусковые механизмы, например швейцарский анкерный спуск современных механических наручных часов, наоборот, сконструированы так, что их осцилляторы колеблются большую часть времени независимо и соприкасаются со спусковым механизмом лишь на очень короткий момент, необходимый для передачи им импульса. Такие спусковые механизмы относятся к группе свободных.

Эта последняя категория спусковых механизмов имеет очень важное значение. В прошлом она дала также стимул для возникновения весьма совершенных систем точных часов со свободными маятниками, которые привились в научном измерении времени, в астрономии и в специальных часовых лабораториях. Свободные маятники были завершающей фазой развития механических колесных часов, имевшей наибольший успех в первых трех десятилетиях нашего века. Результаты измерения времени механизмами со свободными маятниками были отличными, и их превзошли только современные электронные системы с кварцевыми осцилляторами.

Практика показала, что одни спусковые механизмы или их модификации лучше подходят для крупных башенных, напольных или настенных часов, а другие – исключительно для малых карманных или наручных часов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector