Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диммер; схема регулятора яркости света для ламп

Диммер – схема регулятора яркости света для ламп

Возможность плавно менять яркость накаливания светильника позволяет не только использовать освещение с большим комфортом, но и экономить существенную долю электроэнергии. Все что понадобится для этого – подключить лампу через небольшое устройство, называемое диммером.

Заимствованное слово «диммер» (от англ. dimm) подходит этому прибору как нельзя лучше, поскольку в буквальном переводе означает что-то вроде «гаситель» или «делающий тусклым». Какими бывают современные диммеры и можно ли собрать такое устройство самостоятельно – об этом будет рассказано ниже.

Как устроен диммер для ламп освещения

Регуляторы яркости – именно этот термин является русским эквивалентом перекочевавшего из английского языка «диммера» – начали использовать довольно давно. Но в первоначальном варианте приборы эти никакой экономии обеспечить не могли, поскольку представляли собой обыкновенный реостат, хорошо известный каждому, кто хоть изредка посещал школьные уроки физики.

Реостат – это «древний» аналог переменного резистора. Увеличивая его сопротивление, мы отбираем часть поступающей к лампе мощности, но электроэнергия при этом не экономится, а просто превращается в тепло, выделяемое реостатом.

Устройство светового регулятора для лампы накаливания

С появлением полупроводниковой технологии в устройстве диммеров произошли принципиальные изменения, благодаря чему эти приборы стали гораздо более совершенными. В современных регуляторах главная роль отводится двум элементам – симистору и динистору.

Как и обычный выключатель, диммер для светодиода и лампы накаливания снабжен двумя выводами, посредством которых он включается в цепь светильника. Правда, в случае с регулятором яркости выводы нельзя менять местами, поскольку каждому из них соответствует свое назначение: один подключается именно к фазе, другой – только к нагрузке.

Каких-либо ограничений на применение диммеров не существует. Следует только учитывать, что не все типы ламп могут быть подсоединены через такой регулятор. Галогенные люстры или лампы накаливания можно приобретать «под диммер», как говорится, не глядя, а вот люминесцентные (в обиходе их часто называют энергосберегающими) или светодиодные должны иметь специальную пометку о возможности диммирования.

Установка диммера на лампу накаливания не превратит ее в энергосберегающую: понижение яркости лампы накаливания до 50% позволит сэкономить только 15% электроэнергии.

Разумеется, диммер может работать не только с осветительными приборами. С таким же успехом через него можно подключить утюг с поломанным регулятором температуры или паяльник. Важно только, чтобы максимально допустимая мощность диммера – его основная характеристика – соответствовала мощности прибора.

Выключатель с возможностью регулирования яркости свечения ламп накаливания

Как работает сенсорный светильник

Симистор имеет свойство открываться, то есть пропускать ток, только при определенной разности потенциалов на его выводах. Для того чтобы это произошло, конденсатор, подключенный к симистору, должен накопить определенный заряд. Скорость заряда конденсатора зависит от сопротивления переменного резистора (потенциометра), которое задается пользователем. Этот процесс повторяется каждую полуволну.

Чем меньше сопротивление на переменном резисторе, тем быстрее появится достаточный заряд в конденсаторе и тем раньше откроется симистор. Соответственно, увеличится время пропускания тока через лампу и она будет гореть ярче.

Разновидности светорегулятора

Все выпускаемые на сегодняшний день диммеры делятся на две большие группы: механические и электронные.

Диммер механический

Механические. Также называются поворотными или роторными. Это самый простой и недорогой вариант прибора. Для изменения напряжения на светильнике пользователю необходимо поворачивать на диммере ручку потенциометра.

Механические регуляторы, выпускаемые различными производителями, имеют практически идентичное устройство. Разница может заключаться только в качестве деталей и сборки, а также в наличии некоторых компонентов, способствующих стабильной работе прибора на малой мощности и более плавному регулированию напряжения.

Регулятор света сенсорный

Электронные. Регуляторы данного типа имеют более сложное устройство и отличаются, в первую очередь, способом управления: параметры напряжения на потребителе задаются с помощью кнопок – обычных или сенсорных. Наличие микроконтроллера позволяет реализовать целый ряд решений, недоступных для механических приборов:

  • возможность установки нескольких пультов управления диммером в различных зонах помещения;
  • возможность дистанционного регулирования яркости освещения путем воздействия на инфракрасный, радиочастотный или акустический (голосовые команды или хлопок ладонями) сенсор диммера;
  • организация работы освещения по таймеру или по программе, в том числе, в режиме «имитации присутствия»;
  • подключение диммера к датчику освещенния, вследствие чего яркость свечения лампы будет автоматически корректироваться в зависимости от интенсивности естественного освещения.

Единственным недостатком электронных диммеров является высокая стоимость, которая иной раз может превосходить цену механического регулятора на порядок.

О производителях устройства

Среди производителей диммеров популярностью пользуются следующие компании:

Легранд (Legrand)

Легранд (Legrand) Французская компания, занимается производством изделий электротехнического назначения. Высокое качество продукции и ее широкий ассортимент позволили Группе Легранд занять лидирующую позицию на мировом рынке электротехнических изделий.

Dernek GROUP (Лезард)

Dernek GROUP производит электротехнические изделия под торговой маркой Lezard (Лезард). На территории России расположено пять заводов Dernek GROUP. Торговая марка Lezard была создана под производство массового продукта высокого качества.Изделия данной марки эксклюзивными не назовешь. В их конструкцию входят детали консервативного характера – керамические сердечники, токопроводящие элементы из фосфорной бронзы, контакты, содержащие серебро. В поворотном механизме диммеров используется нержавеющая сталь, а сам диммер снабжается предохранителем.

Simon

Simon компания испанского происхождения. Ее заводы открыты на всех континентах. Есть они и в России. Симон производит сенсорные, поворотные диммеры. Есть модели, оснащенные подсветкой. Изделия компании часто используют в зданиях, построенных по технологии «Умный дом».

ABB – швейцарско-шведская компания, занимающая достойное место среди организаций, работающих в аналогичной сфере. Диммеры от данного производителя отличаются технологичностью, долговечностью и высокими эстетическими свойствами.

Диммер АББ

Светорегулятор Легранд

Диммер для ламп накаливания Siemens

Сравнительная таблица цен

Торговая маркаМощность диммера, ВтЦена, руб.
Valena (Legrand)4004083
Simon 155001924
Lezard800800

Для полноты предоставленной информации, смотрите видео. В медиаролике наглядно показано как можно использовать диммер (на примере модели “Лондон” от компании EKF) для продления срока службы лампочки накаливания на десятки лет.

Схема подключения регулятора яркости света своими руками

Покупной диммер стоит не так уж дорого и изготовление светорегулятора своими руками может показаться неоправданным. Тем не менее, иногда необходимость в этом все же возникает. Так, например, далеко не всегда удается найти модель с подходящими для вашего светильника размерами.

Схема регулятора света с гальваноразвязкой

Для изготовления диммера понадобятся такие детали, материалы и инструменты:

  • симистор BT134 (700 В), либо BT136, BT138, MAC8S, MAC212-8, КУ208Г (назначение выводов выбранного симистора следует уточнить в Интернете);
  • динистор DB3 (можно заменить на DB4, DC34, HT32, HT34, HT40,КН102);
  • неполярный конденсатор с емкостью от 0,1 до 0,22 мкФ (250 В);
  • резистор на 10 кОм с предельно допустимой мощностью от 0,25 до 2 Вт;
  • любой компактный переменный резистор сопротивлением 470 – 500 кОм;
  • кусачки;
  • паяльник и материалы для пайки (припой, канифоль);
  • кусок любого провода, например, ПУГНП с площадью поперечного сечения 1 кв. мм;
  • изолента.

Подвергнув выводы радиодеталей лужению, к каждому из них следует припаять небольшой фрагмент провода. Далее детали соединяют по схеме.

Собранный прибор в целях безопасности лучше подключать в разрыв нулевого провода светильника. Его можно определить с помощью тестера или отвертки с индикатором.

Диммер для ламп накаливания (схема)

Диммер своими руками

Ремонтируем покупной прибор

Если регулятор яркости вышел из строя, не стоит торопиться выбрасывать его и тратиться на покупку нового. Во многих случаях прибор можно отремонтировать.

Читать еще:  Импульсный блок питания схема на ir2161 с регулировкой напряжения

Симистор

Как правило, регулятор яркости теряет работоспособность из-за перегоревшего симистора. Причиной такого явления может служить короткое замыкание в цепи либо превышение допустимой нагрузки. Симистор необходимо просто выпаять из платы прибора и заменить.

На замену симистору лучше выбирать элемент с более высоким пределом мощности, чем был у перегоревшего.

В принципе, можно использовать любой симистор, главное, чтобы он был рассчитан на напряжение не ниже 400 В, поскольку напряжение в сети может достигать мгновенных значений в 350 В.

Диммеры делают ваш быт более комфортным. А модели с подсветкой еще и в интерьер внесут нотку оригинальности. Диммер на один светильник можно попробовать установить самостоятельно, но при более сложных схемах подключения (на группу светильников, например) лучше прибегнуть к помощи профессионалов.

Рекомендуем Вам также более подробно ознакомиться со схемой подключения фотореле.

Что использовать для регулировки яркости ламп

Самодельная светодиодная лампа снабжена увеличительным стеклом, и предназначена для комфортного мелкого монтажа и разборок с миниатюрными радиодеталями — многие радиолюбители знают, что на некоторых SMD-деталях трудно разглядеть маркировку даже под увеличительным стеклом. Наличие качественно рассеянной подсветки значительно улучшает чтение маркировки, и упрощает визуальный поиск дефектов в электронных приборах.

Коротко характеристики лампы:

  • Напряжение питания 12 вольт постоянного тока, максимальная потребляемая мощность около 6..7 Вт, количество светодиодов — 20 шт.
  • Встроенный режим автоматической калибровки под напряжение источника питания.
  • Плавное включение и выключение лампы.
  • Плавная регулировка яркости от нуля до заранее запрограммированного предела — с помощью ручки энкодера. Метод регулировки мощности — ШИМ (широтно-импульсная модуляция).
  • Энергонезависимое запоминание всех параметров лампы и последней установленной яркости.
  • Встроенное сервисное меню, доступное через подключение по USB. Меню позволяет настраивать рабочие параметры лампы и просматривать её текущее состояние.

Увеличительная линза на штативе, которая в будущем получит подсветку.

led-lamp-regulator-IMG 0955-lamp01

На обод линзы по замыслу должны быть установлены светодиоды.

led-lamp-regulator-IMG 0962-lamp02

Для изготовления лампы использовались одноваттные светодиоды компании ARL (Arlight), тип OS-1W WarmWhite (75 Lm, 3000K, максимально допустимый ток 0.35 А), цвет свечения — белый теплый. На максимальном токе требуется эффективное охлаждение светодиодов, чтобы не произошло их перегрева свыше 85 градусов Цельсия. Для этого обычно используются специальные радиаторы. Однако я упростил себе задачу — установил светодиоды на простое текстолитовое кольцо, и ограничил максимальный ток до 0.1 А, чем автоматически снималась проблема охлаждения.

led-lamp-regulator-IMG 1034-led01

Внешний вид одного светодиода. «Толстый» вывод — анод.

led-lamp-regulator-IMG 0971-led02

Итак, для крепления светодиодов из двухстороннего фольгированного текстолита было вырезано кольцо. На кольце дремелем сделана разводка на 5 секций светодиодов, по 4 светодиода и резистору в каждой секции. Резистор и светодиоды в каждой секции включены последовательно, а все секции — параллельно друг другу, благодаря чему массив из светодиодов оказался рассчитанным на 12 вольт напряжения питания (см. принципиальную схему далее).

led-lamp-regulator-IMG 0950-ledring01 led-lamp-regulator-IMG 0963-lamp03

На кольцо были припаяны светодиоды и SMD-резисторы. Получилось довольно симпатично.

led-lamp-regulator-IMG 0966-ledring02 led-lamp-regulator-IMG 0974-ledring03

На обратной стороне кольца дремелем была сделана специальная канавка, разделяющее кольцо меди вдоль — получились две шины питания, которые соединяют 5 секций светодиодов параллельно.

led-lamp-regulator-IMG 0977-ledring04 led-lamp-regulator-IMG 0983-ledring05

Теплопроводным клеем «Радиал» кольцо было приклеено к ободу линзы. Хотя теплопроводность тут не особенно помогла — обод линзы все равно пластмассовый.

led-lamp-regulator-IMG 0986-termoglue led-lamp-regulator-IMG 0990-ledring06 led-lamp-regulator-IMG 0992-ledring07

В качестве контроллера и драйвера для управления светодиодами использовалась макетная плата AVR-USB-MEGA16, у которой есть очень удобная возможность обновления программного обеспечения через прошитый в плату USB-бутлоадер. На макетном поле платы был допаян контроллер. Благодаря тому, что на макетной плате было почти все готово, схема получилась очень простая. Допаять нужно было только силовую часть — управление ключевым транзистором, стабилизатор напряжения 5 вольт и RC-цепочку фильтра напряжения с выхода датчика тока.

led-lamp-regulator-sch

Вид на готовое смонтированное устройство с обратной и верхней стороны. Силовой транзистор используется без радиатора, так как на нем рассеивается маленькая мощность (он работает в ключевом режиме на частоте порядка 400 Гц).

led-lamp-regulator-IMG 1006-driver01 led-lamp-regulator-IMG 1010-driver02

Написание и отладка программы заняла немного времени, потому что алгоритм работы очень простой, и были использованы готовые куски из других проектов — ledlight, usb-console, encoder.

led-lamp-regulator-IMG 0998-debug

Консоль управления лампой сделана на основе проекта «USB консоль для управления радиолюбительскими приборами» (см. ссылки [1]). Правки были сделаны минимальные, и все сразу заработало, отладки не потребовалось.

led-lamp-regulator-console01

Краткое описание алгоритма — при включении питания считываются настройки из EEPROM, и лампа зажигается с той яркостью, на которой она была ранее выключена. Вращение ручки энкодера влево плавно уменьшает яркость, вращение вправо — яркость увеличивает. Энкодер также имеет кнопку, нажатие на которую включает и выключает лампу. Включение и выключение происходит с плавным изменением яркости — смотрится довольно красиво. Если при подключении внешнего питания была нажата кнопка энкодера, то все настройки EEPROM сбрасываются, и программа перекалибровывает максимальный предел тока регулирования — основываясь на сопротивлении датчика тока и максимально допустимом токе.

Ток через светодиоды измеряется с помощью встроенного в микроконтроллер АЦП (см. ссылки [2]). ШИМ для управления мощностью генерируется благодаря встроенному в микроконтроллер узлу PWM (см. ссылки 4).

Провода от лампы были собраны в кембрик, а контроллер был прикреплен к ножке линзы.

led-lamp-regulator-IMG 1026-driver03 led-lamp-regulator-IMG 1029-driver04

В результате получилась удобная лампа, которую можно применять при точном радиомонтаже.

led-lamp-regulator-IMG 1011-lamp04 led-lamp-regulator-IMG 1015-lamp05

Несмотря на то, что максимальный ток через светодиоды был уменьшен в три раза (с целью защиты от перегрева), лампа получилась очень яркой.

[Что можно улучшить в конструкции лампы]

1. Для светодиодов можно использовать радиатор. Это позволит в 2..3 раза уменьшить количество используемых светодиодов при той же яркости лампы.
2. Для светодиодов нужен какой-нибудь светорассеиватель, потому что каждый светодиод по отдельности светится очень ярко, что некомфортно для глаза — даже если смотреть на светодиод сбоку.
3. Можно точнее подобрать сопротивление датчика тока, чтобы падение напряжения на нем лучше подходило к интервалу опорного напряжения — это позволит повысить точность измерения тока. Для низкоомных датчиков тока (1 Ом и менее) можно включить АЦП в режим дифференциального входа с коэффициентом умножения X10.
4. Для сглаживания пульсаций тока через светодиоды увеличить частоту ШИМ и поставить последовательно с ними дроссель (так делается в схемах с аппаратным драйвером). Эта доработка позволит увеличить максимально допустимое напряжение питания схемы (сейчас оно 12 вольт). Еще один канал АЦП можно использовать для измерения напряжения питания светодиодов — это позволит автоматически стабилизировать ток через светодиоды при изменении напряжения питания.

Cветодиодная лампа с регулировкой яркости

Самодельная светодиодная лампа снабжена увеличительным стеклом, и предназначена для комфортного мелкого монтажа и разборок с миниатюрными радиодеталями — многие радиолюбители знают, что на некоторых SMD-деталях трудно разглядеть маркировку даже под увеличительным стеклом. Наличие качественно рассеянной подсветки значительно улучшает чтение маркировки, и упрощает визуальный поиск дефектов в электронных приборах. Коротко характеристики лампы:
— напряжение питания 12 вольт постоянного тока, максимальная потребляемая мощность около 6..7 Вт, количество светодиодов — 20 шт.
— встроенный режим автоматической калибровки под напряжение источника питания.
— плавное включение и выключение лампы.
— плавная регулировка яркости от нуля до заранее запрограммированного предела — с помощью ручки энкодера. Метод регулировки мощности — ШИМ (широтно-импульсная модуляция).
— энергонезависимое запоминание всех параметров лампы и последней установленной яркости.
— встроенное сервисное меню, доступное через подключение по USB. Меню позволяет настраивать рабочие параметры лампы и просматривать её текущее состояние.

Читать еще:  Какие законы регулируют интернет торговлю

Увеличительная линза на штативе, которая в будущем получит подсветку.

На обод линзы по замыслу должны быть установлены светодиоды.

Для изготовления лампы использовались одноваттные светодиоды компании ARL (Arlight), тип OS-1W WarmWhite (75 Lm, 3000K, максимально допустимый ток 0.35 А), цвет свечения — белый теплый. На максимальном токе требуется эффективное охлаждение светодиодов, чтобы не произошло их перегрева свыше 85 градусов Цельсия. Для этого обычно используются специальные радиаторы. Однако я упростил себе задачу — установил светодиоды на простое текстолитовое кольцо, и ограничил максимальный ток до 0.1 А, чем автоматически снималась проблема охлаждения.

Внешний вид одного светодиода. «Толстый» вывод — анод.

Итак, для крепления светодиодов из двухстороннего фольгированного текстолита было вырезано кольцо. На кольце дремелем сделана разводка на 5 секций светодиодов, по 4 светодиода и резистору в каждой секции. Резистор и светодиоды в каждой секции включены последовательно, а все секции — параллельно друг другу, благодаря чему массив из светодиодов оказался рассчитанным на 12 вольт напряжения питания (см. принципиальную схему далее).


На кольцо были припаяны светодиоды и SMD-резисторы. Получилось довольно симпатично.


На обратной стороне кольца дремелем была сделана специальная канавка, разделяющее кольцо меди вдоль — получились две шины питания, которые соединяют 5 секций светодиодов параллельно.


Теплопроводным клеем «Радиал» кольцо было приклеено к ободу линзы. Хотя теплопроводность тут не особенно помогла — обод линзы все равно пластмассовый.



В качестве контроллера и драйвера для управления светодиодами использовалась макетная плата AVR-USB-MEGA16, у которой есть очень удобная возможность обновления программного обеспечения через прошитый в плату USB-бутлоадер. На макетном поле платы был допаян контроллер. Благодаря тому, что на макетной плате было почти все готово, схема получилась очень простая. Допаять нужно было только силовую часть — управление ключевым транзистором, стабилизатор напряжения 5 вольт и RC-цепочку фильтра напряжения с выхода датчика тока.

Вид на готовое смонтированное устройство с обратной и верхней стороны. Силовой транзистор используется без радиатора, так как на нем рассеивается маленькая мощность (он работает в ключевом режиме на частоте порядка 400 Гц).


Написание и отладка программы заняла немного времени, потому что алгоритм работы очень простой, и были использованы готовые куски из других проектов — ledlight, usb-console, encoder.

Консоль управления лампой сделана на основе проекта «USB консоль для управления радиолюбительскими приборами» (см. ссылки [2]). Правки были сделаны минимальные, и все сразу заработало, отладки не потребовалось.

Краткое описание алгоритма — при включении питания считываются настройки из EEPROM, и лампа зажигается с той яркостью, на которой она была ранее выключена. Вращение ручки энкодера влево плавно уменьшает яркость, вращение вправо — яркость увеличивает. Энкодер также имеет кнопку, нажатие на которую включает и выключает лампу. Включение и выключение происходит с плавным изменением яркости — смотрится довольно красиво. Если при подключении внешнего питания была нажата кнопка энкодера, то все настройки EEPROM сбрасываются, и программа перекалибровывает максимальный предел тока регулирования — основываясь на сопротивлении датчика тока и максимально допустимом токе.

Ток через светодиоды измеряется с помощью встроенного в микроконтроллер АЦП (см. ссылки [3]). ШИМ для управления мощностью генерируется благодаря встроенному в микроконтроллер узлу PWM (см. ссылки 4).

Провода от лампы были собраны в кембрик, а контроллер был прикреплен к ножке линзы.


В результате получилась удобная лампа, которую можно применять при точном радиомонтаже.


Несмотря на то, что максимальный ток через светодиоды был уменьшен в три раза (с целью защиты от перегрева), лампа получилась очень яркой.

Скучные технические подробности см. по ссылке [1].

[Что можно улучшить в конструкции лампы]

1. Для светодиодов можно использовать радиатор. Это позволит в 2..3 раза уменьшить количество используемых светодиодов при той же яркости лампы.
2. Для светодиодов нужен какой-нибудь светорассеиватель, потому что каждый светодиод по отдельности светится очень ярко, что некомфортно для глаза — даже если смотреть на светодиод сбоку.
3. Можно точнее подобрать сопротивление датчика тока, чтобы падение напряжения на нем лучше подходило к интервалу опорного напряжения — это позволит повысить точность измерения тока. Для низкоомных датчиков тока (1 Ом и менее) можно включить АЦП в режим дифференциального входа с коэффициентом умножения X10.
4. Для сглаживания пульсаций тока через светодиоды увеличить частоту ШИМ и поставить последовательно с ними дроссель (так делается в схемах с аппаратным драйвером). Эта доработка позволит увеличить максимально допустимое напряжение питания схемы (сейчас оно 12 вольт). Еще один канал АЦП можно использовать для измерения напряжения питания светодиодов — это позволит автоматически стабилизировать ток через светодиоды при изменении напряжения питания.

Регулирование уровня яркости светодиодных светильников без эффекта мерцания

На сегодня светодиодная технология является господствующей в области устройств освещения. Уже обычными стали светодиодные фонари, светофоры, устройства освещения автомобилей, кроме того, наблюдается тенденция замены люминесцентных и ламп накаливания на светодиодные в жилых, коммерческих и производственных помещениях.

Объем электроэнергии, который будет сэкономлен при переходе к светодиодному освещению, просто ошеломляет. В одном только Китае власти подсчитали, что при переводе одной трети страны на светодиодное освещение ежегодно будет экономиться 100 млн кВт электрической энергии, а выброс углекислого газа в атмосферу уменьшится на 29 млн т. Однако в светодиодной технологии есть одна проблема, а именно — технология регулирования светового потока.

На лампах накаливания легко реализовать функцию уменьшения яркости, используя простой и дешевый регулятор освещенности, основанный на симисторе. Как результат — они применяются повсеместно. Чтобы светодиодные лампы стали действительно популярными и широко распространенными, необходимо внедрить в них эту функцию при использовании существующих контроллеров и инфраструктуры затемнения.

Яркость свечения ламп накаливания прекрасно поддается регулированию. По иронии судьбы этому способствует крайне низкая их эффективность и, как следствие, высокий ток, который позволяет диммеру (устройству для регулировки уровня освещения, или, иными словами, для затемнения) хорошо работать. Тепловая инерция нити накаливания также позволяет замаскировать любую неустойчивость или колебания, создаваемые диммером. Попытка регулировать яркость светодиодного светильника этим способом создает ряд проблем, таких как мерцание и другие нежелательные эффекты. Чтобы пояснить, почему это происходит, рассмотрим, как работают симисторные диммеры и как они взаимодействуют со светодиодными светильниками.

Рис. 1. Простой симисторный диммер

На рис. 1 изображен типичный симисторный диммер и его вольт-амперная характеристика.
Потенциометр R2 регулирует фазовый угол симистора, который открывается на каждой волне переменного напряжения, когда VC2 превышает напряжение переключения симистора. Когда ток симистора падает ниже его тока удержания (IH), симистор закрывается и ждет зарядки конденсатора С2 в течение следующей половины цикла для включения снова. Напряжение, прилагаемое к нити накаливания лампы, является функцией от фазового угла затемнения, который может варьироваться в диапазоне практически 0–180°.

Читать еще:  Инструкция по регулировке фурнитуры пвх окон

Светодиодная лампа, призванная заменить лампу накаливания, как правило, содержит матрицу светодиодов, расположенных так, чтобы обеспечить максимальную светоотдачу. Светодиоды включены в цепь последовательно. Яркость каждого их них является функцией от тока, текущего через него. Кроме того, прямое падение напряжения на светодиоде составляет примерно 3,4 В (может изменяться в интервале 2,8–4,2 В). Цепочка светодиодов должна питаться от источника постоянного тока со строгим контролем выходных параметров для обеспечения соответствия между соседними лампами.

Чтобы светодиодная лампа была затемняемой, ее источник питания должен преобразовывать изменение фазового угла диммера в изменение постоянного тока питания светодиодной лампы. Трудности достижения этого эффекта в сочетании с правильной работой диммера могут привести к существенному снижению производительности. Могут появиться такие проблемы, как: большое время запуска, мерцание, неравномерное освещение, мигание (при установке минимального уровня освещения). Есть также проблемы с повторяемостью параметров (от изделия к изделию) и нежелательные аудиошумы, идущие от лампы. Эти нежелательные эффекты, как правило, вызваны сочетанием ложных открытий и преждевременных закрытий симисторов, а также недостаточным контролем тока светодиодов. Первопричиной ложного открытия симистора является так называемый токовый «звон» при открытии симистора. Рис. 2 наглядно иллюстрирует эту ситуацию.

Рис. 2. Ток и напряжение на входе источника питания светодиодного осветителя

В тот момент, когда симистор открывается, напряжение практически мгновенно прикладывается к входному LC-фильтру источника питания. Напряжение, приложенное к индуктивности, вызывает «звон». Если при этом ток тиристора упадет ниже тока удержания симистора, последний закрывается. Цепь диммера перезаряжается и вновь запускает симистор. Эти многократные перезапуски симистора могут вызвать нежелательные аудиошумы и мерцание светодиодной лампы. Простые ЭМИ-фильтры могут минимизировать этот нежелательный «звон». Для уверенной работы функции затемнения необходимо, чтобы входные дроссели и конденсаторы были как можно меньше.

Наиболее «звенящим» считается фазовый угол 90° (когда напряжение на пике синусоидальной волны прикладывается ко входу источника питания светодиодного светильника и высокое напряжение сети обуславливает минимальный питающий ток). Если необходимо осуществить глубокое затемнение (т. е. фазовый угол приближается к 180°) при низком питающем напряжении, может произойти преждевременное отключение светодиодной лампы. Чтобы этого не происходило, симистор должен открываться каждый цикл и оставаться открытым практически до того момента, когда переменное напряжение падает до нуля. Для обеспечения этого необходим ток удержания 8–40 мА. Для ламп накаливания поддержать этот ток не составляет никакого труда, однако при использовании светодиодных ламп, потребляющих менее 10% энергии эквивалентной лампы накаливания, ток может легко опуститься ниже уровня тока удержания, что заставит симистор преждевременно выключиться. Это объясняет мерцание и/или ограничение диапазона затемнения.

Ряд других проблем, с которыми может столкнуться разработчик при проектировании светодиодного осветителя, составляют: коэффициент мощности (по стандарту Energy Star он должен быть не менее 0,9 для коммерческих и промышленных применений), строгие требования по энергетической эффективности, строгие допуски по нестабильности выходного напряжения и ЭМИ, безопасность при КЗ и разрыве цепи светодиодов.

Последние разработки компании Power Integrations показывают, как можно обеспечить питание светодиодного осветителя и одновременно совместимость с существующими симисторными диммерами. На рис. 3 приведена схема источника питания 14 Вт для светодиодного светильника с возможностью внешнего затемнения, разработанного этой фирмой.

Рис. 3. Схема изолированного источника питания 14 Вт для светодиодного светильника, совместимого с существующими симисторными диммерами, с высоким коэффициентом мощности и универсальным диапазоном входного напряжения (Увеличить. )

Основой источника является микросхема LNK406EG(U1) семейства LinkSwitch-PH. Представители данной линейки микросхем сочетают силовой MOSFET-ключ на 725 В и ШИМ-контроллер, работающий в режиме без разрыва тока основного дросселя. Контроллер выполняет функцию корректора коэффициента мощности (ККМ) и обеспечивает постоянный выходной ток. Технология контроля выходных параметров по первичной стороне, используемая в микросхемах LinkSwitch-PH, обеспечивает точный контроль выходного тока, избавляет от использования оптопары и части вторичной цепи, обычно применяемых в обратноходовых изолированных преобразователях, притом, что функция, отвечающая за ККМ, избавляет от использования входного накопительного электролитического конденсатора.

Микросхемы семейства LinkSwitch-PH могут быть настроены для работы как в режиме с затемнением, так и в режиме без затемнения. Для применения в связке с симисторным диммером используется резистор R4 на выводе REFERENCE и связка резисторов R2+R3 4 МОм на выводе VOLTAGE MONITOR для обеспечения линейного соотношения между входным напряжением и выходным током и максимального расширения диапазона затемнения.

Режим работы без разрыва тока основного дросселя обладает двумя ключевыми достоинствами: сниженным уровнем потерь на проводимость (следовательно, выше КПД) и меньшим уровнем ЭМИ (следовательно, для соответствия стандарту по ЭМИ требуется фильтр меньших размеров). Один X-конденсатор может быть исключен и использован дроссель меньшего типоразмера (либо также исключен). Встроенная в семейство микросхем LinkSwitch-PH функция джиттера основной частоты переключения MOSFET-ключа еще более снижает необходимость в фильтрующих компонентах. Меньший входной ЭМИ-фильтр представляет собой меньшее реактивное сопротивление для диммера, что, соответственно, уменьшает уровень «звона». Стабильность еще больше увеличена благодаря тому, что питание микросхем LinkSwitch-PH осуществляется от собственного внутреннего источника опорного напряжения. Добавление демпфера для работы с диммерами и цепи деления напряжения обеспечивает надежную работу без эффекта мерцания в максимально широком диапазоне затемнения.

Вышеописанный источник питания для светодиодного светильника полностью совместим с существующими симисторными диммерами в очень широком диапазоне затемнения (1000–1, 500–0,5 мA), обладает КПД >85% и коэффициентом мощности >0,9. Он наглядно показывает, что проблемы несовместимости светодиодных светильников и симисторных диммеров могут быть преодолены и, как результат, может быть построен простой драйвер для недорогой и надежной светодиодной лампы с функцией затемнения.

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

Сделай сам

На днях сделал себе небольшой прожектор для освещения в мастерской. Вместо стандартной лампы на 220 вольт я установил в него светодиоды на 12 вольт. Пришла идея сделать регулировку яркости, который там очень не хватало.

В моем ящичке с радиодеталями нашелся советский транзистор КТ805, на базе которого я и буду делать диммер, чтобы регулировать яркость прожектора. Эти транзисторы я снял с советского усилителя звука.

Сделать такой диммер сможет каждый, кто хоть раз держал паяльник в руках.

Первым делом я подготовил компоненты, это сам транзистор КТ805, резистор на 500 Ом и четыре проводка, также для проверки взял аккумулятор на 12 вольт и светодиодную панель прожектора.

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

К выводам транзистора припаял три провода, далее по схеме припаял резистор на 500 Ом. (Листаем галерею).

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

А вот и сама схема сборки, художник из меня так себе.

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

В итоге получился диммер, с помощью которого можно регулировать напряжение, подойдет он для того, чтобы управлять частотой вращения двигателя постоянного тока, яркостью светодиодов и лампочек.

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

Проверил как работает регулировка на лампочке накаливания и светодиодной панели прожектора. (Листаем галерею).

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

Как сделать регулировку яркости светодиодов и ламп накаливания на одном транзисторе

Как видно по фотографиям выше, регулировка происходит не от нуля, а примерно с 5 вольт, меня это полностью устраивает, но если вам необходим диапазон регулировок побольше, то замените резистор 500 Ом номиналом на 1 кОм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector