Bt-teh.ru

БТ Тех
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы блоков питания с регулировкой по току и напряжению на кр142ен

Схемы блоков питания с регулировкой по току и напряжению на кр142ен

Сборка блока питания с регулировкой тока/напряжения своими руками

Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.

Схема ИП с регулировкой тока и напряжения

Сама схема питания — это популярный комплект из таких элементов:

  1. Сам регулируемый стабилизатор, в котором заменен T1 — BC337 на BD139, T2 — BD243 на BD911
  2. D1-D4 — диоды 1N4001 заменены на RL-207
  3. C1 — 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
  4. D6, D7 — 1N4148 на 1N4001

У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).

Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов — 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).

На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита — ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60×60 мм.

Полезное: Устройство плавного пуска трансформатора

Что касается индикаторных дисплеев, они показывают:

  • синий — текущее напряжение в вольтах V
  • красный — текущий ток в амперах A

Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.

С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Регулируемый блок питания 0…16В 5А.

Предлагаем вашему вниманию универсальный блок питания, который имеет на выходе два постоянных стабилизированных напряжения 5 и 12,6 вольт, а также регулируемый выход, позволяющий изменять выходное напряжение в пределах от 0 до 16 вольт. Последний выдерживает ток нагрузки порядка 5 ампер. Токи стабилизаторов DA1 и DA2 соответствуют техническим характеристикам этих элементов. Приведенная ниже схема публиковалась в 2011 году в одном из выпусков журнала “Радиомир”.

Блок питания обладает следующими характеристиками:

● Сетевое напряжение …………………………………………………………….……………. 180-230 В;● Мощность, потребляемая от сети …………………………………………………..….…….…120 Вт;● Выходное напряжение первого канала …………. ……. …..… 5 В при токе до 2 ампер;● Выходное напряжение второго канала …………. …….12,6 В при токе до 1,5 ампер;● Выходное напряжение регулируемого канала . … 0 – 16 В при токе до 5 ампер.

Принципиальная схема изображена на рисунке ниже.

Рассмотрим схему этого стабилизатора.Сетевое напряжение 220 вольт поступает на входной фильтр от помех, собранный на T1 и двух конденсаторах С1 и С2 (был взят готовый от БП компьютера), далее на понижающий трансформатор Т2. Выпрямитель реализован на диодной сборке КВР206, правда остается не понятно, эта сборка диодов расчитана на Uобрат=600В, но ток она способна пропустить всего 2 ампера. Технические характеристики смотри на картинке ниже.

Вместо нее наверно лучше было бы поставить, например, KBU6G, (RS604) мост 6А, 400В. Параметры этой диодной сборки такие:

— Максимальное постоянное обратное напряжение, В ………………………..………….400;- Максимальный прямой(выпрямленный за полупериод) ток, А …………………………..6;- Максимальное импульсное обратное напряжение, В ……………………..…………….480;- Максимальный допустимый прямой импульсный ток, А ……………..…..…………….250;- Максимальный обратный ток, мкА …………………………………………………………. 10;- Максимальное прямое напряжение, В ………………………………………………………. 1.

Или, например, 8GBU06 (GBU8J), Диодный мост, 8А 600В.

При неимении подобных диодных сборок, выпрямительный мост можно собрать из отдельных диодов, способных выдерживать большие токи. Например, можно использовать Д231, Д213, Д246, или подобные.

Пятивольтовый канал собран на микросхеме 7805 (КР142ЕН5А). Это стабилизатор фиксированного напряжения. Вот его параметры:

— Тип ……………………………..…. …. ….… нерегулируемый- Выходное напряжение, В……….……….…. ……. ………. 5- Ток нагрузки, А………………………….………. ……………… 2- Тип корпуса ……………………………….………. ….. TO220- Максимальное входное напряжение, В …. …..15- Нестабильность по напряжению, % . 0.05- Нeстабильность по току, % …………………. ………..1.33- Температурный диапазон, C………………. …. ….-10…70

Двенадцативольтовый канал реализован на стабилизаторе фиксированного напряжения 7812 (КР142ЕН8Б).

Технические характеристики 7812 (КР142ЕН8Б):- Тип . нерегулируемый- Выходное напряжение, В. 12- Ток нагрузки, А . 1,5- Тип корпуса. TO220- Максимальное входное напряжение, В. 35- Нестабильность по напряжению, %. 0.05- Нeстабильность по току, %. 0,67- Температурный диапазон, C. -10…70

Импортным аналогом КР142ЕН8Б является микросхема A7812C.

Обратите внимание, выходное напряжение этого канала на 0,6 вольта сделано больше, чем напряжение, которое выдает микросхема (за счет диода VD2), т.е. на ее выходе получается 12,6 вольт. Это сделано для того, чтобы была возможность при необходимости подзарядить 12 вольтовый аккумулятор.

Схема, защищающая стабилизатор от перегрузки и КЗ выполнена на микросхеме DA3 (TL431). Она представляет собой трехвыводной регулируемый прецизионный параллельный стабилизатор с высокой температурной стабильностью. Выпускается фирмами MOTOROLA и TEXAS INSTRUMENTS. Изготавливается в корпусах как для обычного, так и поверхностного монтажа (смотри рисунок ниже).

Параметры TL431: для увеличения таблицы кликните на изображении.

Аналоги TL431 : 142ЕН19 , HA17431A , AS2431A1D , IR9431N , LM431BCM , TL431ACD , AS2431A1LP , KA431ACZ , LM431BCZ , KA431AD , LM431BIM , SPX431LS , AS2431B1LP , HA17431VP и другие.

На транзисторе VT1 (КТ829А) собран собственно сам регулятор 0 – 16 вольт. Параметры транзистора смотри ниже.

Импортными аналогами КТ829А являются: 2SD686 , 2SD691 , 2SD692 , BD263A , BD265А , BD267A , BD335 , BD647 , BD681 , BDW23C , BDX53C.При увеличении напряжения на резисторе R8 при перегрузках или коротком замыкании на выходе регулируемого канала, произойдет открытие DA3, которая в свою очередь зашунтирует базу VT1 и ограничит выходной ток стабилизатора. Необходимый ток ограничения можно выставить сопротивлением R7. Автор статьи утверждает, что вместо микросхемы DA3 возможно поставить любой транзистор не большой мощности с обратной проводимостью. Резистор R8 намотан нихромом 1мм на 2 ваттный резистор типа МЛТ.Зеленый светодиод HL2 индицирует наличие напряжения на выходе. HL1 горит при подключенном блоке питания к сети 220 вольт.

Читать еще:  Как регулировать смыв унитаза

Печатная плата устройства изображена на следующем рисунке.

В качестве амперметра применена головка на 100 мкА (например, можно поставить М2003), которая подключена к шунту RS1. Шунт можно изготовить путем намотки 10 витков медного провода диаметром 0,8мм на оправку диаметром 8мм. Чтобы подогнать показания измерительной головки , последовательно ей подключают подстроечный резистор (можно многооборотный), и с помощью него подгоняют показания относительно эталонного амперметра, включенного последовательно с нагрузкой. В качестве эталонного амперметра можно использовать цифровой мультиметр, включенный в режим измерения больших токов.Электролит С3 (смотри схему), ставьте вольт на 35, меньше утечки, меньше греться будет.Трансформатор выбирайте ватт на 150 – 200, например, перемотанный ТС-180 (200) от старых телевизоров, или типа ТПП-292 (293, 294, 303). На вторичной обмотке должно быт порядка 18 – 24 вольт, и чтобы она могла выдерживать ток порядка 5 – 6 ампер.Микросхемы стабилизаторов можно закрепить к металлическому корпусу блока питания через слюду. VT1 ставится на радиатор. При подстройке резистора R7, его оставляют в таком положении, когда при плавном вращении ручки потенциометра R3 напряжение на нагрузке перестает расти.

11 схем питания различной сложности

В полной мере сказанное относится не только к ламповым проектам, поэтому все, что будет описано ниже, пригодится и для цифровых, и для аналоговых трактов на полупроводниках.

«А в чем, собственно, проблема? Для накала существуют трехвыводные сильноточные стабилизаторы, а анодные делаются либо на тех же лампах, либо на высоковольтных MOSFET’ах», — такова была первая реакция большинства конструкторов аудио, с кем я пытался завести разговор на эту тему. А жизнь, между прочим, не так проста, как кажется на первый взгляд. Любимые всеми интегральные стабилизаторы серий LM78, LM79, LM317 и LM337 очень удобны и стоят копейки, но в технике класса High End применяются крайне редко из-за широкого спектра ВЧ-шумов, которые у них вообще не нормируются. Эти шумы не слышны, но, взаимодействуя с полезным сигналом, становятся причиной интермодуляции. А вот она уже ведет к излишней жесткости на верхних частотах и частичной потере разрешения. Если от такого стабилизатора питаются катоды прямонакальных ламп, особенно входных, вы можете вообще потерять интерес к проекту — вся грязь из сети, изрядно приправленная собственным шумом микросхемы, будет усилена и попадет на выход усилителя. Поэтому серьезные разработчики в последнее время все чаще предпочитают более сложную схемотехнику, но гарантирующую защиту от ВЧ-неприятностей. Что же касается высоковольтных стабилизаторов, то там ситуация еще хуже. Во-первых, в качестве источников эталонного напряжения используются либо кремниевые, либо газоразрядные стабилитроны, и включаются они, как правило, в катод управляющей лампы (или эмиттер транзистора, что существа дела не меняет). Во-вторых, в ламповых усилителях, особенно однотактных, проходной элемент стабилизатора находится в цепи звукового сигнала и вносит в него свой неповторимый акцент. Так что, кроме конденсаторов, усилительных ламп и трансформаторов, вы будете еще слушать какой-нибудь MOSFET или 6С33С. У меня есть подозрение, что аналогичная ситуация наблюдается и в транзисторных усилителях, но сам не экспериментировал, врать не стану.

Начнем с питания низковольтных цепей — накала, смещения и т.д. В каталоге любого крупного производителя полупроводников обязательно есть малошумящие источники опорного напряжения, и некоторые с регулируемым напряжением выхода. У этих стабилитронов только один минус — ток через переход ограничен несколькими миллиамперами, поэтому для сколько-нибудь серьезной нагрузки их придется дополнить внешним проходным транзистором. Наиболее широко распространен чип TL431, выпускаемый фирмой Texas Instruments. Напряжение шумов на его выходе около 7 мкВ на частоте 10 Гц, стоит около 16 руб. и выглядит, как обычный маломощный транзистор в пластмассовом корпусе ТО-92. Очень удачная схема его применения выложена на сайте www.klausmobile.narod.ru (рис.1).

Здесь IC1 служит источником опорного напряжения, а IC2 является датчиком схемы защиты от КЗ выхода. Достоинство схемы в том, что в качестве проходного элемента работает МДП-транзистор с изолированным затвором, поэтому при любой нагрузке (схема нормирована до 5 А) ток через стабилитрон остается в пределах нормы. R3 задает выходное напряжение, а R2 — ток срабатывания защиты. MOSFET может быть любым из серий IRF400 — 600 и устанавливается на теплоотводе. Рассеиваемая на нем мощность подсчитывается по формуле P = (Uвх — Uвых) x Iнагр. Если стабилизатор должен обеспечивать фиксированное напряжение, то его тоже легко рассчитать: Uвых = (1+R1/R2) x Uref, где Uref — опорное напряжение TL431, т.е 2,5 В. Из этого легко видеть, что для получения Uвых = 5 В, например, питания цифровой части ЦАПа, сопротивления R1 и R2 должны быть одного номинала (примерно 3,3 — 6,8 К).

Для слаботочных цепей, например, сеточного смещения или питания ОУ в тракте CD-проигрывателя, очень хороши параллельные стабилизаторы. В них регулирующий элемент включен параллельно нагрузке, что имеет неоспоримые преимущества — по переменному току его сопротивление очень мало, а по постоянному — очень велико. Вам это ничего не напоминает? Правильно, конденсатор, причем без какой-либо абсорбции, утечки, с мизерным ESR и индуктивностью. Короче, почти идеальный. Пример такого стабилизатора показан на рис. 2. Источник опорного напряжения здесь тот же — TL431, и выходное напряжение рассчитывается по той же самой формуле и подстраивается триммером R1. Стабилизация (если кто не знает) происходит за счет падения напряжения на резисторе R0. Номинал R3 выбирается с тем расчетом, чтобы ток через TL431 был в пределах 1 — 3 мА. Еще более очевидны выгоды такой схемы для построения высоковольтных стабилизаторов, но об этом ниже.

На той же TL431 легко собрать схему задержки включения анодного питания (рис. 3). Время задержки задается параметрами цепочки R1/С1 и при указанных номиналах составляет около 25 секунд. Оптрон — 293КП9В или ему подобный.

В схемах дифференциальных каскадов с т.н. long tail отрицательное напряжение для лучшей симметрии следует подавать через источник тока. Часто для этого используют лампы. А если нет места, или трансформатор питания работает на пределе и уже не потянет еще один накал?

Читать еще:  Реле регулятор напряжения с регулировкой напряжения и тока

Пригодится простенькая схемка на полевом транзисторе (рис. 4). Единственный элемент, на качество которого стоит обратить внимание — электролитический конденсатор в делителе затвора. Он должен быть либо Black Gate, либо Elna Cerafine. Собирается источник тока на крошечной печатной плате и может быть встроен в любой усилитель при апгрейде. Отрицательное напряжение на «хвост» можно получить выпрямлением напряжения накала.

Еще один возможный путь апгрейда — снижение шумов стандартных источников питания. Способ примерно тот же, т.е. шунтирование шины питания активным фильтром с определенными параметрами (рис. 5). Без какой-либо настройки он подавляет ВЧ-составляющую на 20 дБ, а если подобрать резистор в цепи эмиттера, то можно додавить их и до 40 дБ. Потребление тока самим шунтом около 10 мА, так что он вряд ли перегрузит стабилизатор. Если ток в нагрузке более 300 мА, то шунт придется умощнить (рис. 6). Для этого понадобится составной транзистор (КТ825/827 в зависимости от полярности источника), который будет забирать на себя уже около 40 мА. Зато им можно «чистить» сильноточные шины, например накальные. Если в предварительном усилителе или фонокорректоре выносной блок питания, то к сетевым помехам и шумам стабилизатора добавятся ВЧ и СВЧ-наводки на соединительные провода. Частично эта проблема решается с помощью ферритовых колец, надеваемых на жгут или отдельные проводники, но гораздо более заметный эффект дает схема, показанная на рис. 7. Она ставится на приемном конце, т.е. в самом усилителе, и питается от той же шины, которую чистит. ОУ должен быть по возможности малошумящим и широкополосным, к качеству остальных деталей особых требований не предъявляется. На рис. 8 видно, что эффективность подавления шумов на частоте 100 Гц достигает 24 дБ без точного подбора номиналов. Более подробное описание этих шумоподавителей можно найти по адресу www.wenzel.com/documents/finesse.html .

Рис. 5
Рис. 6
Рис. 7
Рис. 8

Теперь об анодном питании. В 1998 г. компания Technics начала выпускать усилители DVD Audio Ready, т.е. с расширенным динамическим диапазоном. Для них пришлось разрабатывать новые источники питания, поскольку при имеющихся невозможно было снизить шумы усилителя до нужной величины. Была запатентована схема т.н. виртуальной батареи или, как ее еще называют, схема с умножением емкости. Высоковольтный вариант такой батареи показан на рис. 9 (верхняя часть схемы). Как видите, здесь вообще нет стабилитрона, поэтому, строго говоря, это не стабилизатор, а фильтр с составным проходным элементом. Суть идеи в том, что входное сопротивление МДП-транзистора — несколько сотен мегаом, что позволяет подключить его затвор к RC-цепочке с такой огромной постоянной времени (4,7 мОм и 47 мкФ соответственно), что никакие помехи через нее не проходят. Минусы схемы — уже упомянутое отсутствие стабилизации и очень долгий заряд, время которого составляет примерно 20 мин. Аппарат с таким источником питания вообще выключать не рекомендуется.

Более серьезные люди питают аноды ламп от параллельных стабилизаторов. Помимо перечисленных выше преимуществ, они обладают и еще одним — после выключения питания быстро разряжают емкости фильтров. Кстати, об этом почему-то мало кто заботится, а ведь вреда от этого ничуть не меньше, чем при подаче напряжения на анод холодной лампы. В предах, например, конденсаторы разряжаются несколько минут, а катоды остывают значительно быстрее. Кроме того, шунты начинают потреблять ток мгновенно после включения, благодаря чему фильтр застрахован от перегрузок по напряжению в режиме холостого хода. Схема относительно простого и недорогого шунт-регулятора (рис. 10) содержит мощный высоковольтный MOSFET IRF820 и схему управления на малошумящем ОУ TL-071. Опорное напряжение задается делителем на инвертирующем входе, а напряжение шины питания контролируется через интегрирующую RC-цепочку 1,5 мОм и 1 мкФ. Между выходом ОУ и затвором транзистора стоит режекторный ВЧ-фильтр, вырезающий самый вредный участок шумового спектра. Обратите внимание, что нагрузка подключается к шинам в том месте, где припаяны элементы делителя, еще лучше подключить верхнюю точку интегрирующей цепочки непосредственно к потребителю, например, к анодной обмотке выходного трансформатора. Между выпрямителем и стабилизатором должно быть включено либо сопротивление, на котором будет падать разница напряжений, либо, что значительно лучше, мощный источник тока. Такой, например, как на рис. 11 слева. Это вообще очень интересная схема, ее автор, Манфред Хубер (http://home.t-online.de/home/MHuber/bjtreg.htm) уверен, что она дает тот же эффект, что и тефлоновый конденсатор емкостью 1000 мкФ, включенный параллельно нагрузке. Я пробовал запитывать от этого стабилизатора фонокорректор с выходным трансформаторным каскадом на 4П1Л, разница по сравнению с виртуальной батареей действительно заметна на слух. Во-первых, бас становится более собранным, заметно уменьшается интермодуляция, схема — менее чувствительной к качеству трансформатора. Очевидно, возвратный путь сигнала на землю здесь намного короче, да и выходное сопротивление источника практически не зависит от частоты. Заодно несколько советов: если выходное напряжение не должно регулироваться в широких пределах, дорогие полевые транзисторы BSS135 (около 120 руб. каждый), работающие как источники тока стабилитронов LM4041 и ZPD30, можно заменить обычными сопротивлениями. Их номинал рассчитывают так, чтобы через них протекал ток 1,3 мА. Транзисторы ZTX458/558 фирмы Zetex с напряжением Uкэ = 450 В у нас найти невозможно, зато есть недорогие аналоги Philips и Motorola. Ток стабилизатора рассчитывается по формуле I = 1,23/(P1 + R2), а напряжение вот как: Uвых = 30(1 + (P2 + R9)/R8). Число 30 означает напряжение стабилитрона D4, если будет другой, нужно внести поправку. Стабилитронов здесь бояться не надо — шум D4 гасится цепочкой R5-C2-C5, а D5 выполняет сугубо защитные функции, и в нормальном режиме лавинного пробоя в нем нет. Транзисторы Q2 и Q8 устанавливаются на теплоотводы, способные рассеять 6 — 8 Вт.

Рис. 10
Рис. 11

Приятных вам экспериментов, и будьте осторожнее с высоким напряжением!

Подготовлено по материалам журнала «Салон AudioVideo», февраль 2017 г. www.salonav.com

Поделитесь статьёй:

Простой блок питания на TL431

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Читать еще:  То пластикового окна регулировка ключами

Сообщения

ZLOdeyB@sil@

finn32


Рация BaoFeng UV-10R (10Вт)

Похожие публикации

Илья Юрьевич

Продам блоки питания от ККМ на 24 вольта 2,5 ампер. Партномер PW-060A-01Y240. Штекер тройной. Все рабочие. Продам по цене 300р шт. Нахожусь в Москве в СВАО, Лосиноостровский район, но так же вышлю за Ваш счёт в любой город/страну.
Фото, схему и детальную инфу прилагаю ниже:

aleksandr.root

Доброго времени суток!
Потихоньку изучаю импульсные блоки питания. На фото две схемы, разница между ними только в двух деталях. Насколько первая схема лучше или хуже второй схемы и почему? На то, что они очень простые и без стабилизации выходного напряжения, не обращайте внимание

Мастерская МегаМастер

Здравствуйте!
Вот такой аппарат достался мне.
Хочу из него сделать мощный источник питания, с диодным мостом и сглаживающими конденсаторами, с напряжением 36В примерно и для нагрузки в 1500 Вт.
Знаю надо будет отмотать немного витков, но тут проблем не вижу, отмотаю. Нужно безопасное напряжение.
Есть несколько вопросов? Сколько ватт он будет потреблять на холостом ходу из розетки.
Не перегреется ли он во время беспрерывной работы? Или придется установить вентилятор?
Цель: подключение к нему малогабаритных обогревателей мощностью 50 Вт каждый, примерно до 30 штук, через терморегулятор с хорошим твердотельным реле, который при достижении заданной температуры отключал бы трасформатор от сети.

Гость Андрей

POLI ROBSON

Продам в сборе: О.М 2.7, два блока питания, защита АС ко всему этому комплекту софт старт идет в подарок. Как дополнение можно приобрести Standby для включения усилителя.
Цена комплекта (2 канала О.М. 2.7, 2 БП, защита ) 6000 руб.
Цена Standby 750 руб.
Возможно чуть-чуть поторгуемся!
Отправлю любой службой доставки на ваш выбор из респ. Башкортостан

roboforum.ru

блок питания с TL431 отрубается при регулировке.

блок питания с TL431 отрубается при регулировке.

Myp » 28 апр 2016, 23:37

есть китайский БП стандартный железный кубик решетчатый
на 220 вольт и tl431 в обратной связи через оптрон
при попытке отрегулировать напряжение, поставить выше 13 вольт на выходе, блок видимо уходит в защиту и отрубается.
начинает моргать с секундным интервалом.

есть идеи как это вылечить?

на фото трёхногая микра это 431
слева на плате запаян переменный резистор 1К, он идёт на минус через резистор 2.2К
второй резистор в цепи 431 на 10К и он идёт на плюс.
максимально рабочее положение резистора это 0.1К

вроде как по формуле напряжение считается правильно, 13.3V = 2.5(1+10К/(2.2К+0.1К)
но почему блок вырубается если ещё подкрутить резистор, до нуля?
без нагрузки регулируется нормально, не вырубается.

Re: блок питания с TL431 отрубается при регулировке.

Dmitry__ » 28 апр 2016, 23:55

Re: блок питания с TL431 отрубается при регулировке.

Myp » 29 апр 2016, 00:46

допаял к резюку на 10 ом ещё резюк на 3 ома последовательно, максимальный диапазон сдвинулся к 15 вольтам.

гугление по второй микре sm8023(на фото она в правой половине высоковольтной, не видно), дало даташит с иероглифами и картинку с англицкими буквами.
на картинке одна нога подписана как CS и подключена через совсем маленький резистор, 0.5 Ом.
я решил что это нога для контроля тока, выпаял один резюк из трёх параллельных(2, 2 и 4.7 Ом) и блок стал вырубаться раньше
допаял туда ещё пару резюков на 10 ом параллельно и блок стал вырубаться позже =) стал выдавать аж 14.2 вольт и 1.36 ампера

Добавлено спустя 31 секунду:

Re: блок питания с TL431 отрубается при регулировке.

Dmitry__ » 29 апр 2016, 05:54

Изображение

Ты так не делай, верни все в зад. Эта цепь отвечает за прерывание тока в накопительном дросселе при достижении определенного тока. Со стороны 220 вольт вообще ничего НЕ ТРОГАЙ!

Re: блок питания с TL431 отрубается при регулировке.

Myp » 29 апр 2016, 11:11

блин а я уже обрадовался что работает.

10 ом я напаял со стороны 220 вольт, параллельно резюку R9 на схеме, тоесть было 0.81 ома, стало 0.7 ома.
на схеме написано CS, я решил это Current Sens
по ихнему это правда 电流检测输入脚。
но гугл со мной солидарен, "Вход тока обнаружения контактный."

R13 по схеме я повысил до 13кОм, напряжение поднялось до 15 без нагрузки, кондёры на 16V, надо бы заменить конечно.
но при токе выше 1.3 ампера блок вырубается а мне надо ещё поднять хотябы на 0.3 А

ЗЫ
у меня чипдип в городе открылся, я теперь могу как нормальный человек притти в магазин и купить себе там резистор, ОДИН штука.
и не платить за доставку 150 р. или не ждать месяц из китая)

Re: блок питания с TL431 отрубается при регулировке.

Dmitry__ » 29 апр 2016, 15:27

А, ну вот теперь понятно Да, такой доработкой ты повысил отдаваемый ток бп. Ну погоняй временем бп под новой нагрузкой, если через час работы дроссель и транзистор холодные, то можно так оставить. Если что, можно заменить транзистор на более мощный. А дроссель, скорее всего, унифицирован с более мощными версиями этого бп и замена не требуется.

Re: блок питания с TL431 отрубается при регулировке.

Myp » 29 апр 2016, 17:11

дроссель холодный, транзюк тёплый, диод горячий.
хотя диод 10 ампер 100 вольт. непонятно почему греется.

ЗЫ
а в импульсниках можно выходные диоды параллелить?
у меня кучка выпаяных диодов из старых железок, они от 5 до 10 ампер

Re: блок питания с TL431 отрубается при регулировке.

Dmitry__ » 29 апр 2016, 18:17

Re: блок питания с TL431 отрубается при регулировке.

Myp » 29 апр 2016, 19:54

а диод там и так шотки MBR10100CT
транзистор hw4n60, 4 ампера по даташиту

Добавлено спустя 13 минут 43 секунды:
наверно не надо мучать бобика.
не даст он ампераж нужный

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector